钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
首页
论文降重
免费查重
学术期刊
学术导航
任务中心
论文润色
登录
文献导航
学科分类
>
综合
工业技术
科教文艺
医药卫生
基础科学
经济财经
社会科学
农业科学
哲学政法
社会科学II
哲学与人文科学
社会科学I
经济与管理科学
工程科技I
工程科技II
医药卫生科技
信息科技
农业科技
数据库索引
>
中国科学引文数据库
工程索引(美)
日本科学技术振兴机构数据库(日)
文摘杂志(俄)
科学文摘(英)
化学文摘(美)
中国科技论文统计与引文分析数据库
中文社会科学引文索引
科学引文索引(美)
中文核心期刊
cscd
ei
jst
aj
sa
ca
cstpcd
cssci
sci
cpku
默认
篇关摘
篇名
关键词
摘要
全文
作者
作者单位
基金
分类号
搜索文章
搜索思路
钛学术文献服务平台
\
学术期刊
\
工业技术期刊
\
自动化技术与计算机技术期刊
\
计算机系统应用期刊
\
基于主动学习的K-Hub聚类算法
基于主动学习的K-Hub聚类算法
作者:
何振峰
封建邦
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取
高维数据
半监督聚类
关联限制
主动学习
K-Hub
摘要:
K-Hub聚类算法是一种有效的高维数据聚类算法,但是它对初始聚类中心的选择非常敏感,并且对于靠近类边界的实例往往不能正确聚类.为了解决这些问题,提出一种结合主动学习和半监督聚类的K-Hub聚类算法.运用主动学习策略学习部分实例的关联限制,然后利用这些关联限制指导K-Hub的聚类过程.实验结果表明,基于主动学习的K-Hub聚类算法能有效提升K-Hub的聚类准确率.
暂无资源
收藏
引用
分享
推荐文章
基于主动学习策略的半监督聚类算法研究
K-均值算法
主动学习策略
半监督学习
聚类
基于ISFLA的K均值聚类算法
SFLA
吸引排斥机制
ISFLA
K均值算法
基于花粉算法的K均值聚类算法
K均值聚类
花粉算法
初始聚类中心
基于主动数据选取的半监督聚类算法
数据挖掘
半监督聚类
主动学习
标签数据
数据选取
最小生成树
多密度数据集
不平衡数据集
内容分析
文献信息
引文网络
相关学者/机构
相关基金
期刊文献
内容分析
关键词云
关键词热度
相关文献总数
(/次)
(/年)
文献信息
篇名
基于主动学习的K-Hub聚类算法
来源期刊
计算机系统应用
学科
关键词
高维数据
半监督聚类
关联限制
主动学习
K-Hub
年,卷(期)
2016,(3)
所属期刊栏目
研究方向
页码范围
187-193
页数
7页
分类号
字数
6449字
语种
中文
DOI
五维指标
作者信息
序号
姓名
单位
发文数
被引次数
H指数
G指数
1
何振峰
福州大学数学与计算机科学学院
34
74
4.0
6.0
2
封建邦
福州大学数学与计算机科学学院
1
0
0.0
0.0
传播情况
被引次数趋势
(/次)
(/年)
引文网络
引文网络
二级参考文献
(13)
共引文献
(39)
参考文献
(7)
节点文献
引证文献
(0)
同被引文献
(0)
二级引证文献
(0)
1994(1)
参考文献(0)
二级参考文献(1)
1999(1)
参考文献(0)
二级参考文献(1)
2000(1)
参考文献(0)
二级参考文献(1)
2001(1)
参考文献(0)
二级参考文献(1)
2005(1)
参考文献(1)
二级参考文献(0)
2006(1)
参考文献(0)
二级参考文献(1)
2007(1)
参考文献(0)
二级参考文献(1)
2009(4)
参考文献(0)
二级参考文献(4)
2010(2)
参考文献(1)
二级参考文献(1)
2012(2)
参考文献(1)
二级参考文献(1)
2013(2)
参考文献(1)
二级参考文献(1)
2014(2)
参考文献(2)
二级参考文献(0)
2015(1)
参考文献(1)
二级参考文献(0)
2016(0)
参考文献(0)
二级参考文献(0)
引证文献(0)
二级引证文献(0)
研究主题发展历程
节点文献
高维数据
半监督聚类
关联限制
主动学习
K-Hub
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机系统应用
主办单位:
中国科学院软件研究所
出版周期:
月刊
ISSN:
1003-3254
CN:
11-2854/TP
开本:
大16开
出版地:
北京中关村南四街4号
邮发代号:
82-558
创刊时间:
1991
语种:
chi
出版文献量(篇)
10349
总下载数(次)
20
总被引数(次)
57078
期刊文献
相关文献
1.
基于主动学习策略的半监督聚类算法研究
2.
基于ISFLA的K均值聚类算法
3.
基于花粉算法的K均值聚类算法
4.
基于主动数据选取的半监督聚类算法
5.
基于半监督学习的K-均值聚类算法研究
6.
面向主动学习的模糊核聚类采样算法
7.
基于深度信念网络的K-means聚类算法研究
8.
基于人工蜂群优化的K均值聚类算法
9.
基于差分演化的K-均值聚类算法
10.
基于变异的k-means聚类算法
11.
一种改进的基于遗传算法的K均值聚类算法
12.
基于模糊核聚类和主动学习的异常检测方法
13.
K-means聚类算法的研究
14.
基于改进花朵授粉的K-均值聚类算法
15.
基于改进BA算法的K-means聚类
推荐文献
钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
首页
论文降重
免费查重
学术期刊
学术导航
任务中心
论文润色
登录
根据相关规定,获取原文需跳转至原文服务方进行注册认证身份信息
完成下面三个步骤操作后即可获取文献,阅读后请
点击下方页面【继续获取】按钮
钛学术
文献服务平台
学术出版新技术应用与公共服务实验室出品
原文合作方
继续获取
获取文献流程
1.访问原文合作方请等待几秒系统会自动跳转至登录页,首次访问请先注册账号,填写基本信息后,点击【注册】
2.注册后进行实名认证,实名认证成功后点击【返回】
3.检查邮箱地址是否正确,若错误或未填写请填写正确邮箱地址,点击【确认支付】完成获取,文献将在1小时内发送至您的邮箱
*若已注册过原文合作方账号的用户,可跳过上述操作,直接登录后获取原文即可
点击
【获取原文】
按钮,跳转至合作网站。
首次获取需要在合作网站
进行注册。
注册并实名认证,认证后点击
【返回】按钮。
确认邮箱信息,点击
【确认支付】
, 订单将在一小时内发送至您的邮箱。
*
若已经注册过合作网站账号,请忽略第二、三步,直接登录即可。
期刊分类
期刊(年)
期刊(期)
期刊推荐
一般工业技术
交通运输
军事科技
冶金工业
动力工程
化学工业
原子能技术
大学学报
建筑科学
无线电电子学与电信技术
机械与仪表工业
水利工程
环境科学与安全科学
电工技术
石油与天然气工业
矿业工程
自动化技术与计算机技术
航空航天
轻工业与手工业
金属学与金属工艺
计算机系统应用2022
计算机系统应用2021
计算机系统应用2020
计算机系统应用2019
计算机系统应用2018
计算机系统应用2017
计算机系统应用2016
计算机系统应用2015
计算机系统应用2014
计算机系统应用2013
计算机系统应用2012
计算机系统应用2011
计算机系统应用2010
计算机系统应用2009
计算机系统应用2008
计算机系统应用2007
计算机系统应用2006
计算机系统应用2005
计算机系统应用2004
计算机系统应用2003
计算机系统应用2002
计算机系统应用2001
计算机系统应用2000
计算机系统应用2016年第9期
计算机系统应用2016年第8期
计算机系统应用2016年第7期
计算机系统应用2016年第6期
计算机系统应用2016年第5期
计算机系统应用2016年第4期
计算机系统应用2016年第3期
计算机系统应用2016年第2期
计算机系统应用2016年第12期
计算机系统应用2016年第11期
计算机系统应用2016年第10期
计算机系统应用2016年第1期
关于我们
用户协议
隐私政策
知识产权保护
期刊导航
免费查重
论文知识
钛学术官网
按字母查找期刊:
A
B
C
D
E
F
G
H
I
J
K
L
M
N
O
P
Q
R
S
T
U
V
W
X
Y
Z
其他
联系合作 广告推广: shenyukuan@paperpass.com
京ICP备2021016839号
营业执照
版物经营许可证:新出发 京零 字第 朝220126号