原文服务方: 计算机测量与控制       
摘要:
为提高手机应用软件的安全性,提出一种基于Android系统的手机恶意软件检测模型;模型利用数据挖掘的方法对恶意软件中的敏感API调用进行数据挖掘,进而得到恶意软件检测规则;针对检测规则在检测非恶意软件时,产生较高误报率的问题,设计了加权FP-growth关联规则挖掘算法,算法在数据挖掘的两个步骤中,对敏感API调用加权,利用支持度阈值去除一些出现次数频繁而权重小的规则,降低了非恶意软件的误报率;实验结果表明,模型对恶意软件检测率达到81.7%,非恶意软件的检错率降低到11.3%.
推荐文章
基于Android权限信息的恶意软件检测
权限
恶意检测
安卓
机器学习
数据挖掘
基于软件基因的Android恶意软件检测与分类
Android安全
恶意软件基因
use-def链
检测
分类
基于SVM的敏感权限Android恶意软件检测方法
Android
敏感权限特征
恶意检测
SVM
Android恶意软件检测方法研究综述
恶意软件检测
特征
机器学习
混淆矩阵
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于Android系统的手机恶意软件检测模型
来源期刊 计算机测量与控制 学科
关键词 Android系统 恶意软件 数据挖掘 敏感API FP-growth算法
年,卷(期) 2016,(1) 所属期刊栏目 测试软件工程
研究方向 页码范围 156-158
页数 3页 分类号 TP309.5
字数 语种 中文
DOI 10.16526/j.cnki.11-4762/tp.2016.01.043
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 徐蕾 沈阳航空航天大学计算机学院 45 187 8.0 10.0
2 马晋杨 沈阳航空航天大学计算机学院 1 6 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (2)
节点文献
引证文献  (6)
同被引文献  (21)
二级引证文献  (3)
2004(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2016(1)
  • 引证文献(1)
  • 二级引证文献(0)
2017(3)
  • 引证文献(3)
  • 二级引证文献(0)
2018(4)
  • 引证文献(2)
  • 二级引证文献(2)
2019(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
Android系统
恶意软件
数据挖掘
敏感API
FP-growth算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机测量与控制
月刊
1671-4598
11-4762/TP
大16开
北京市海淀区阜成路甲8号
1993-01-01
出版文献量(篇)
0
总下载数(次)
0
总被引数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导