基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对以往手势识别研究中更偏重识别率而弱化实时性的情况,本文将偏最小二乘法应用于手势识别领域,提出一种基于特征降维的手势识别方法.首先在手势样本进行手势分割的基础上提取其梯度方向直方图特征,然后采用偏最小二乘法对手势特征进行降维,最后使用支持向量机对降维后的手势特征进行训练和识别.基于自制手势库的实验结果表明,本文所提方法在取得较高识别率的前提下,经过特征降维显著改善了手势识别的实时性.
推荐文章
基于HOG特征与手部多特征信息融合的静态手势识别
手势识别
多角度
方向梯度直方图
手部多特征
支持向量机
基于SURF特征跟踪的动态手势识别算法
动态手势识别
加速鲁棒特征
特征跟踪
动态手势模型
一种基于特征融合的手势识别方法
手势识别
指尖检测
HOG
支持向量机
YCrCb
特征提取
基于加速度轨迹图像的手势特征提取与识别
手势识别
加速度传感器
非负矩阵分解
隐马尔可夫模型
人机交互
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于特征降维的手势识别
来源期刊 福建电脑 学科
关键词 手势识别 偏最小二乘法 梯度方向直方图 支持向量机
年,卷(期) 2016,(7) 所属期刊栏目 基金项目论文
研究方向 页码范围 20-22
页数 3页 分类号
字数 4263字 语种 中文
DOI 10.16707/j.cnki.fjpc.2016.07.009
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (90)
共引文献  (53)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1973(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(7)
  • 参考文献(0)
  • 二级参考文献(7)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(5)
  • 参考文献(0)
  • 二级参考文献(5)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(10)
  • 参考文献(1)
  • 二级参考文献(9)
2005(7)
  • 参考文献(0)
  • 二级参考文献(7)
2006(9)
  • 参考文献(1)
  • 二级参考文献(8)
2007(4)
  • 参考文献(1)
  • 二级参考文献(3)
2008(4)
  • 参考文献(0)
  • 二级参考文献(4)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(3)
  • 参考文献(0)
  • 二级参考文献(3)
2011(7)
  • 参考文献(1)
  • 二级参考文献(6)
2012(8)
  • 参考文献(0)
  • 二级参考文献(8)
2013(9)
  • 参考文献(2)
  • 二级参考文献(7)
2014(7)
  • 参考文献(0)
  • 二级参考文献(7)
2015(4)
  • 参考文献(4)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
手势识别
偏最小二乘法
梯度方向直方图
支持向量机
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
福建电脑
月刊
1673-2782
35-1115/TP
大16开
福州市华林邮局29号信箱
1985
chi
出版文献量(篇)
21147
总下载数(次)
86
总被引数(次)
44699
论文1v1指导