作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对传统协同过滤算法中存在的数据稀疏性问题,本文结合多示例学习框架的特点,通过构建新的数据组织模型,提出了改进的基于多示例聚类的协同过滤算法.实验证明,与基于用户的协同过滤算法和基于用户聚类的协同过滤算法相比,本文算法具有较高的推荐精度.
推荐文章
基于混合蛙跳联合聚类的协同过滤算法
推荐系统
协同过滤
联合聚类
数据填充
混合蛙跳
基于用户兴趣模型聚类的协同过滤推荐算法
协同过滤
推荐系统
用户兴趣模型
推荐算法
基于谱聚类与多因子融合的协同过滤推荐算法
协同过滤
谱聚类
Salton因子
时间衰减因子
用户偏好因子
基于项目聚类和评分的时间加权协同过滤算法
协同过滤
同等对待
项目聚类
时间加权
最近邻居
准确性
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于多示例聚类的协同过滤算法
来源期刊 信息化建设 学科
关键词 多示例学习 K-均值聚类 训练包 平均绝对误差
年,卷(期) 2016,(5) 所属期刊栏目 设备信息与技术
研究方向 页码范围 293,295
页数 2页 分类号
字数 2409字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 顾世忍 山东建筑大学计算机科学与技术学院 2 0 0.0 0.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (20)
共引文献  (99)
参考文献  (5)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(3)
  • 参考文献(1)
  • 二级参考文献(2)
2007(3)
  • 参考文献(1)
  • 二级参考文献(2)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
多示例学习
K-均值聚类
训练包
平均绝对误差
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信息化建设
月刊
1008-1941
33-1216/N
大16开
浙江省杭州市体育场路479号浙江省行政中心8号楼3楼
1998
chi
出版文献量(篇)
10099
总下载数(次)
23
论文1v1指导