基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The recent advancements in sensor technology have made it possible to collect enormous amounts of data in real time.How to find out unusual pattern from time series data plays a very important role in data mining.In this paper,we focus on the abnormal subsequence detection.The original definition of discord subsequences is defective for some kind of time series,in this paper we give a more robust definition which is based on the k nearest neighbors.We also donate a novel method for time series representation,it has better performance than traditional methods(like PAA/SAX)to represent the characteristic of some special time series.To speed up the process of abnormal subsequence detection,we used the clustering method to optimize the outer loop ordering and early abandon subsequence which is impossible to be abnormal.The experiment results validate that the algorithm is correct and has a high efficiency.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Research of Detection Algorithm for Time Series Abnormal Subsequence
来源期刊 国际计算机前沿大会会议论文集 学科 社会科学
关键词 TIME series REPRESENTATION ABNORMAL SUBSEQUENCE K nearest NEIGHBOR
年,卷(期) 2017,(1) 所属期刊栏目
研究方向 页码范围 4-6
页数 3页 分类号 C5
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
TIME
series
REPRESENTATION
ABNORMAL
SUBSEQUENCE
K
nearest
NEIGHBOR
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
国际计算机前沿大会会议论文集
半年刊
北京市海淀区西三旗昌临801号
出版文献量(篇)
616
总下载数(次)
6
总被引数(次)
0
论文1v1指导