基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Tyre pressure monitoring system(TPMS)is compulsory in most countries like the United States and European Union.The existing systems depend on pressure sensors strapped on the tyre or on wheel speed sensor data.A difference in wheel speed would trigger an alarm based on the algorithm implemented.In this paper,machine learning approach is proposed as a new method to monitor tyre pressure by extracting the vertical vibrations from a wheel hub of a moving vehicle using an accelerometer.The obtained signals will be used to compute through statistical features and histogram features for the feature extraction process.The LMT(Logistic Model Tree)was used as the classifier and attained a classification accuracy of 92.5%with 10-fold cross validation for statistical features and 90.5% with 10-fold cross validation for histogram features.The proposed model can be used for monitoring the automobile tyre pressure successfully.
推荐文章
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
Thermodynamic properties of San Carlos olivine at high temperature and high pressure
San Carlos olivine
Thermodynamic property
Thermal expansion
Heat capacity
Temperature gradient
Lithium elemental and isotopic disequilibrium in minerals from peridotite xenoliths from Shangzhi, N
Mantle peridotite
Li isotope
Mantle metasomatism
Northeastern China
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Classifying Machine Learning Features Extracted from Vibration Signal with Logistic Model Tree to Monitor Automobile Tyre Pressure
来源期刊 结构耐久性与健康监测(英文) 学科 交通运输
关键词 Machine learning Vibration ACCELEROMETER Statistical FEATURES HISTOGRAM FEATURES LOGISTIC model tree(LMT) TYRE PRESSURE monitoring system
年,卷(期) 2017,(2) 所属期刊栏目
研究方向 页码范围 191-208
页数 18页 分类号 U46
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Machine
learning
Vibration
ACCELEROMETER
Statistical
FEATURES
HISTOGRAM
FEATURES
LOGISTIC
model
tree(LMT)
TYRE
PRESSURE
monitoring
system
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
结构耐久性与健康监测(英文)
季刊
1930-2983
江苏省南京市浦口区东大路2号东大科技园A
出版文献量(篇)
39
总下载数(次)
0
总被引数(次)
0
论文1v1指导