Riser reactor is a key unit in the Fluid Catalytic Cracking (FCC), and it has important influences on increasing the yield coefficient of gas and oil. In this paper, the behaviors of gas-solid two-phase flow in the traditional y-type riser reactor are investigated by numerical simulation. The calculated particle concentration distribution is in good agreement with the experimental data, which verified the advanced models and calculating methods. The non-uniform distribution, such as core-annulus flow, may result in the unreasonable matching relationship of catalyst-to-oil ratio. An optimized riser with cuneal internals is proposed and the comparison of two different structures of riser reactor is presented. The comparison results show that the cuneal internals in the riser both can block effectively the slip down of the particles near wall region and weaken core-annulus flow structure due to the redistribution of particles. The results also prove that the particle concentration distribution becomes uniform along the axial and radial direction in the optimized riser by adding cuneal internals, which would be benefits for the catalytic cracking reactions.