基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Statistical two-group comparisons are widely used to identify the significant differentially expressed (DE) signatures against a therapy response for microarray data analysis. We applied a rank order statistics based on an Autoregressive Conditional Heteroskedasticity (ARCH) residual empirical process to DE analysis. This approach was considered for simulation data and publicly available datasets, and was compared with two-group comparison by original data and Auto-regressive (AR) residual. The significant DE genes by the ARCH and AR residuals were reduced by about 20% - 30% to these genes by the original data. Almost 100% of the genes by ARCH are covered by the genes by the original data unlike the genes by AR residuals. GO enrichment and Pathway analyses indicate the consistent biological characteristics between genes by ARCH residuals and original data. ARCH residuals array data might contribute to refining the number of significant DE genes to detect the biological feature as well as ordinal microarray data.
推荐文章
Groundwater quality assessment using multivariate analysis, geostatistical modeling, and water quali
Groundwater
Multivariate analysis
Geostatistical modeling
Geochemical modeling
Mineralization
Ordinary Kriging
Spatial analysis of carbon storage density of mid-subtropical forests using geostatistics: a case st
Carbon storage density
Geostatistics
Mid-subtropical forests
Spatial autocorrelation
Spatial heterogeneity
A re-assessment of nickel-doping method in iron isotope analysis on rock samples using multi-collect
Fe isotope
Ni-doping
Stable isotope
Precision and accuracy
Mass bias correction
Pseudo-high mass resolution
Statistics matters in interpretations of non-traditional stable isotopic data
Isotopic data processing
Error propagation
Significant digits
Difference between means with uncertainties
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Microarray Analysis Using Rank Order Statistics for ARCH Residual Empirical Process
来源期刊 统计学期刊(英文) 学科 医学
关键词 Time Series Model ARCH Wilcoxon Statistic VOLATILITY Deferentially EXPRESSED Gene SIGNATURES Two-Group Comparison Breast Cancer GEO GENOME-WIDE Expression Profiling GO Analysis
年,卷(期) 2017,(1) 所属期刊栏目
研究方向 页码范围 54-71
页数 18页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Time
Series
Model
ARCH
Wilcoxon
Statistic
VOLATILITY
Deferentially
EXPRESSED
Gene
SIGNATURES
Two-Group
Comparison
Breast
Cancer
GEO
GENOME-WIDE
Expression
Profiling
GO
Analysis
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
统计学期刊(英文)
半月刊
2161-718X
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
584
总下载数(次)
0
总被引数(次)
0
期刊文献
相关文献
推荐文献
论文1v1指导