基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Phosphorus (P) risk indices are commonly used in the USA to estimate the field-scale risk of agricultural P runoff. Because the Ohio P Risk Index is increasingly being used to judge farmer performance, it is important to evaluate weighting/scoring of all P Index parameters to ensure Ohio farmers are credited for practices that reduce P runoff risk and not unduly penalized for things not demonstrably related to runoff risk. A sensitivity analysis provides information as to how sensitive the P Index score is to changes in inputs. The objectives were to determine 1) which inputs are most highly associated with P Index scores and 2) the relative impact of each input variable on resultant P Index scores. The current approach uses simulations across 6134 Ohio point locations and five crop management scenarios (CMSs), representing increasing soil disturbance. The CMSs range from all no-till, which is being promoted in Ohio, rotational tillage, which is a common practice in Ohio to full tillage to represent an extreme practice. Results showed that P Index scores were best explained by soil test P (31.9%) followed by connectivity to water (29.7%), soil erosion (13.4%), fertilizer application amount (11.3%), runoff class (9.5%), fertilizer application method (2.2%), and finally filter strip (2.0%). Ohio P Index simulations across CMSs one through five showed that >40% scored <15 points (low) while <1.5% scored >45 points (very high). Given Ohio water quality problems, the Ohio P Index needs to be stricter. The current approach is useful for Ohio P Index evaluations and revision decisions by spatially illustrating the impact of potential changes regionally and state-wide.
推荐文章
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
Determination of brominated diphenyl ethers in atmospheric particulate matter using selective pressu
Brominated diphenyl ethers
Atmospheric particulate matters
Selective pressurised liquid extraction
Gas chromatography-mass spectrometry
Spatial analysis of carbon storage density of mid-subtropical forests using geostatistics: a case st
Carbon storage density
Geostatistics
Mid-subtropical forests
Spatial autocorrelation
Spatial heterogeneity
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Using Crop Management Scenario Simulations to Evaluate the Sensitivity of the Ohio Phosphorus Risk Index
来源期刊 环境保护(英文) 学科 医学
关键词 OHIO P INDEX Sensitivity Analysis P INDEX Simulations RUSLE2 Simulations CROP MANAGEMENT Simulations
年,卷(期) 2017,(2) 所属期刊栏目
研究方向 页码范围 141-158
页数 18页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
OHIO
P
INDEX
Sensitivity
Analysis
P
INDEX
Simulations
RUSLE2
Simulations
CROP
MANAGEMENT
Simulations
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
环境保护(英文)
月刊
2152-2197
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
956
总下载数(次)
0
总被引数(次)
0
论文1v1指导