基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The information on urban land cover distribution and its dynamics is useful for understanding urbanization and its impacts on the hydrological cycle, water management, surface energy balances, urban heat island, and biodiversity. This study utilizes machine learning, texture variables and spectral bands to quantify the urban growth annually. We used multi-temporal Landsat satellite image sets from 2007 to 2016 and Random Forest classification to map urban land-use in Dar es Salaam. We also applied Annual classification approach to detect the spatiotemporal patterns of urban areas. This approach improved classification accuracy and aided in understanding the urban land-use system dynamics operating in our study area. The results pointed out that, the total built-up areas have grown from 318 km2, 388.6 km2 and 634.7 km2 in 2007, 2012 and 2016 respectively. The built up areas growth rate is almost 8%, which makes Dar es Salaam be among the fastest growing cities in Africa. The results indicate that, combining spectral bands, texture variables (NDVI BCI, MNDWI) and annual classification map approach was sufficient to map the urban areas. The approach applied in this research provides a useful guide to the urban growth studies and may also serve as a tool for land management planners.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Quantification of Annual Urban Growth of Dar es Salaam Tanzania from Landsat Time Series Data
来源期刊 遥感技术进展(英文) 学科 医学
关键词 RANDOM FOREST ANNUAL Classification MAP TEXTURE Analysis Dar es Salaam
年,卷(期) 2017,(3) 所属期刊栏目
研究方向 页码范围 175-191
页数 17页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
RANDOM
FOREST
ANNUAL
Classification
MAP
TEXTURE
Analysis
Dar
es
Salaam
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
遥感技术进展(英文)
季刊
2169-267X
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
148
总下载数(次)
0
总被引数(次)
0
论文1v1指导