基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
In the present scenario,computational modeling has gained much importance for the prediction of the properties of concrete.This paper depicts that how computational intelligence can be applied for the prediction of compressive strength of Self Compacting Concrete(SCC).Three models,namely,Extreme Learning Machine(ELM),Adaptive Neuro Fuzzy Inference System(ANFIS)and Multi Adaptive Regression Spline(MARS)have been employed in the present study for the prediction of compressive strength of self compacting concrete.The contents of cement(c),sand(s),coarse aggregate(a),fly ash(f),water/powder(w/p)ratio and superplasticizer(sp)dosage have been taken as inputs and 28 days compressive strength(fck)as output for ELM,ANFIS and MARS models.A relatively large set of data including 80 normalized data available in the literature has been taken for the study.A comparison is made between the results obtained from all the above-mentioned models and the model which provides best fit is established.The experimental results demonstrate that proposed models are robust for determination of compressive strength of self-compacting concrete.
推荐文章
Groundwater quality assessment using multivariate analysis, geostatistical modeling, and water quali
Groundwater
Multivariate analysis
Geostatistical modeling
Geochemical modeling
Mineralization
Ordinary Kriging
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
Prospectivity modeling of porphyry copper deposits: recognition of efficient mono- and multi-element
Geochemical signature
Concentration–area (C–A) fractal
Principal component analysis (PCA)
Student's t-value
Fuzzy mineral prospectivity modeling(MPM)
Prediction–area (P–A) plot
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Prediction of Compressive Strength of Self-Compacting Concrete Using Intelligent Computational Modeling
来源期刊 计算机、材料和连续体(英文) 学科 工学
关键词 Self COMPACTING Concrete(SCC) Compressive Strength Extreme Learning Machine(ELM) ADAPTIVE Neuro Fuzzy INFERENCE System(ANFIS) Multi ADAPTIVE Regression Spline(MARS).
年,卷(期) 2017,(2) 所属期刊栏目
研究方向 页码范围 157-174
页数 18页 分类号 TG1
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Self
COMPACTING
Concrete(SCC)
Compressive
Strength
Extreme
Learning
Machine(ELM)
ADAPTIVE
Neuro
Fuzzy
INFERENCE
System(ANFIS)
Multi
ADAPTIVE
Regression
Spline(MARS).
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机、材料和连续体(英文)
月刊
1546-2218
江苏省南京市浦口区东大路2号东大科技园A
出版文献量(篇)
346
总下载数(次)
4
总被引数(次)
0
期刊文献
相关文献
推荐文献
论文1v1指导