基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Tactical decisions on natural resource management require accurate and up to date spatial information for sustainable forest management. Remote sensing devices by the use of multispectral data obtained from satellites or airborne sensors, allow substantial data acquisition that reduce cost of data collection and satisfy demands for continuous precise data. Forest height and Diameter at Breast Height (DBH) are crucial variables to predict volume and biomass. Traditional methods for estimation of tree heights and biomass are time consuming and labour intensive making it difficult for countries to carry out periodic National forest inventories to support forest management and REDD+ activities. This study assessed the applicability of LiDAR data in estimating tree height and biomass in a variety of forest conditions in Londiani Forest Block. The target forests were natural forest, plantation forests and other scattered forests analysed in a variety of topographic conditions. LiDAR data were collected by an aircraft flying at an elevation of 1550 m. The LIDAR pulses hitting the forest were used to estimate the forest height and the density of the vegetation, which implied biomass. LiDAR data were collected in 78 sampling plots of 15 m radius. The LiDAR data were ground truthed to compare its accuracy for above ground biomass (AGB) and height estimation. The correlation coefficients for heights between LiDAR and field data were 0.92 for the pooled data, 0.79 in natural forest, 0.95 in plantation forest and 0.92 in other scattered forest. AGB estimated from LiDAR and ground truthed data had a correlation coefficient of 0.86 for the pooled data, 0.78 in natural forest, 0.84 in plantation forest and 0.51 in other scattered forests. This implied 62%, 84% and 89% accuracy of AGB estimation in natural forests, other scattered forests and plantation forests respectively. The even aged conditions of plantation forests might have resulted to better estimates of height and AGB as compared to uneven aged natural forests and scatt
推荐文章
Forest carbon storage in Guizhou Province based on field measurement dataset
Forest carbon storage
Field measurement dataset
Karst landform
Spatial analysis of carbon storage density of mid-subtropical forests using geostatistics: a case st
Carbon storage density
Geostatistics
Mid-subtropical forests
Spatial autocorrelation
Spatial heterogeneity
Low net primary productivity of dominant tree species in a karst forest, southwestern China: first e
Biomass increment
Tree ring
Girth measurement
Karst evergreen and deciduous broadleaved forest
Allometric functions
Low carbon storage of woody debris in a karst forest in southwestern China
Secondary forest
Fine woody debris
Coarse woody debris
Dead wood
Karst
Subtropical China
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Estimation of Tree Height and Forest Biomass Using Airborne LiDAR Data: A Case Study of Londiani Forest Block in the Mau Complex, Kenya
来源期刊 林学期刊(英文) 学科 医学
关键词 LIDAR HEIGHT BIOMASS Relationship Correlation
年,卷(期) 2017,(2) 所属期刊栏目
研究方向 页码范围 255-269
页数 15页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
LIDAR
HEIGHT
BIOMASS
Relationship
Correlation
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
林学期刊(英文)
季刊
2163-0429
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
314
总下载数(次)
0
期刊文献
相关文献
推荐文献
论文1v1指导