基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
The present work aims to develop a new vegetable insulating fluid for power transformers based on Jatropha curcas oil. Besides its technical benefits, Jatropha curcas oil has a socio-economic role by promoting income to rural families, contributing to the countryside development and avoiding rural exodus. Thus, the entire transformer oil production (extraction, processing, characterization and accelerated aging) was covered and a new process was developed. For oil extraction, the most suitable process was the solvent extraction (5 mL of hexane per gram of crushed non-peeled seeds during 30 minutes) with an oil yield of 32%. In raw oil processing stage, the degumming, with 0.4 g of phosphoric acid per 100 g of oil, at 70°C, was used to remove phosphatides. Then, free fatty acids were 96% neutralized with a sodium hydroxide solution (0.5% w/w) at room temperature. For the oil clarification, the combination of 5% w/woil of activated carbon and 1% w/woil of MgO resulted in a bright, odorless and clear oil with an acid number of 0.04 mgKOH·g﹣1. The oil drying in a vacuum rotary evaporator, at 70°C, for 2 hours reduced the water content to 177 ppm. The processed oil was characterized following ASTM D6871 methods. This oil presented higher dielectric breakdown voltage (55 kV) than commercial transformer fluids (BIOTEMP?, EnvirotempFR3?, and Bivolt?), which increases transformer safety, capacity and lifetime. In addition, the processed oil has a lower viscosity than BIOTEMP? fluid, which can enhance the heat dissipation efficiency in the transformer. Moreover, the processed oil flash and fire points of 310°C and >340°C, respectively, confirm the great security of vegetable insulating fluids. The analyzed properties of the processed oil fulfill all the ASTM D6871, ABNT NBR 15422 and IEC 62770 specifications. Therefore, Jatropha curcas oil is a potential substitute formineral insulating fluids.
推荐文章
Ore genesis of Badi copper deposit, northwest Yunnan Province, China: evidence from geology, fluid i
Badi copper deposit
Fluid inclusion
Sulfur isotope
Hydrogen and oxygen isotope
Ore genesis
基于GT-Power的消声器排气尾管长度仿真研究
消声器
实验
仿真模拟
尾管长度
Oil geochemistry derived from the Qinjiatun–Qikeshu oilfields: insight from light hydrocarbons
Light hydrocarbons
Crude oil
Lishu Fault Depression
Geochemistry characteristic
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Development of a New Bio-Based Insulating Fluid from <i>Jatropha curcas</i>Oil for Power Transformers
来源期刊 化学工程与科学期刊(英文) 学科 医学
关键词 Vegetable Insulating OIL JATROPHA curcas Transformer OIL Biodegradable OIL Renewable Material Dielectric BREAKDOWN
年,卷(期) 2017,(2) 所属期刊栏目
研究方向 页码范围 235-255
页数 21页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Vegetable
Insulating
OIL
JATROPHA
curcas
Transformer
OIL
Biodegradable
OIL
Renewable
Material
Dielectric
BREAKDOWN
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
化学工程与科学期刊(英文)
季刊
2160-0392
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
386
总下载数(次)
0
总被引数(次)
0
论文1v1指导