基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
In this work, investigation of particle rebound characteristics due to impact with surface of a target material is presented. The rebound of a spherical particle after impact on a planar surface was analyzed in detail. Specifically, the coefficient of restitution of the particle under various impact conditions was investigated numerically. This study has been conducted by carrying out a series of FEM-based (finite element method) simulations using ANSYS Autodyn software. First, a summary about the state of the art and the theoretical models for the elastic collisions were reviewed. Afterwards, the impact of an aluminum oxide particle on an aluminum alloy target surface was modeled. Using the Autodyn tool, the results were compared and validated by the experimental results of Gorham and Kharaz [1]. Selection of an appropriate equation of state (EOS) and a strength model for each material had a strong effect on the results. For both materials, the Shock EOS was applied for the final simulations. As the strength model, the Johnson-Cook and the elastic model were used, respectively. The agreement of the obtained numerical results with the experimental data confirmed that the proposed model can precisely predict the real behavior of the particle after the impact, when the material models are properly chosen. Furthermore, the effects of impact velocity and impact angle on the rebound characteristics of the particle were analyzed in detail. It was found that the selection of the exact value of friction coefficient has a drastic effect on the prediction of restitution coefficient values, especially the tangential restitution coefficient.
推荐文章
Prospectivity modeling of porphyry copper deposits: recognition of efficient mono- and multi-element
Geochemical signature
Concentration–area (C–A) fractal
Principal component analysis (PCA)
Student's t-value
Fuzzy mineral prospectivity modeling(MPM)
Prediction–area (P–A) plot
Adsorption characteristics of copper ion on nanoporous silica
Nanoporous silica
Copper ion
Adsorption
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Numerical Investigation of Particle Rebound Characteristics with Finite Element Method
来源期刊 流体动力学(英文) 学科 医学
关键词 Finite Element Method (FEM) ANSYS Autodyn Single PARTICLE Impact RESTITUTION COEFFICIENT Friction COEFFICIENT
年,卷(期) 2017,(3) 所属期刊栏目
研究方向 页码范围 310-329
页数 20页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Finite
Element
Method
(FEM)
ANSYS
Autodyn
Single
PARTICLE
Impact
RESTITUTION
COEFFICIENT
Friction
COEFFICIENT
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
流体动力学(英文)
季刊
2165-3852
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
302
总下载数(次)
0
总被引数(次)
0
期刊文献
相关文献
推荐文献
论文1v1指导