基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了减少人脸超分图像的边缘伪影和图像噪点,利用基于稀疏编码的单幅图像超分辨率重建算法,在字典学习阶段,结合L1范数引入在线字典学习方法,使字典根据当前输入图像块和上次迭代生成的字典逐列更新,得到更加精确的超完备字典对,用于图像重建.实验中进行的仿真结果表明,改进算法超分结果的峰值信噪比(PSNR)和结构相似性(SSIM)比同类型的稀疏编码超分法(SCSR)和应用在线字典学习算法的超分方法(ODLSR)均有较大幅度提升,比后者平均提升0.72 dB和0.0187.同时,视觉上有效地消除了边缘伪影,且在处理含噪人脸图像时,具备更强的去噪能力和更好的鲁棒性.
推荐文章
基于在线字典学习的人脸超分辨率重建
在线字典学习
超分辨率重建
含噪人脸图像
稀疏编码
基于稀疏表示的图像超分辨率重建算法
超分辨率重建
稀疏表示
L1范数优化
字典学习
粒子群优化算法
特征提取算子
融合低秩和稀疏表示的图像超分辨率重建算法
超分辨率重建
低秩矩阵恢复
稀疏重建
噪声
字典学习
基于L1/2正则化和局部纹理约束的人脸超分辨率图像重建
稀疏表示
人脸图像
图像重建
L1/2正则化
局部纹理约束
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于稀疏编码的鲁棒型人脸超分辨率重建
来源期刊 电讯技术 学科 工学
关键词 人脸图像 超分辨率重建 稀疏编码 在线字典学习
年,卷(期) 2017,(8) 所属期刊栏目 电子与信息工程
研究方向 页码范围 957-962
页数 6页 分类号 TN919.8
字数 4620字 语种 中文
DOI 10.3969/j.issn.1001-893x.2017.08.017
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 阮若林 湖北科技学院生物医学工程学院 18 60 4.0 7.0
2 刘芳华 湖北科技学院电子与信息工程学院 12 20 3.0 4.0
3 倪浩 湖北科技学院电子与信息工程学院 15 24 3.0 4.0
4 王建峰 湖北科技学院网络管理中心 16 34 4.0 4.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (12)
共引文献  (64)
参考文献  (12)
节点文献
引证文献  (1)
同被引文献  (4)
二级引证文献  (0)
1997(2)
  • 参考文献(1)
  • 二级参考文献(1)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(1)
  • 二级参考文献(1)
2007(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(3)
  • 参考文献(2)
  • 二级参考文献(1)
2013(2)
  • 参考文献(1)
  • 二级参考文献(1)
2014(5)
  • 参考文献(4)
  • 二级参考文献(1)
2015(1)
  • 参考文献(0)
  • 二级参考文献(1)
2016(2)
  • 参考文献(1)
  • 二级参考文献(1)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
人脸图像
超分辨率重建
稀疏编码
在线字典学习
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电讯技术
月刊
1001-893X
51-1267/TN
大16开
成都市营康西路85号
62-39
1958
chi
出版文献量(篇)
5911
总下载数(次)
21
总被引数(次)
28744
论文1v1指导