基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Recently many research works have been conducted and published regarding fractional order differential equations. There are several approaches available for numerical approximations of the solution of fractional order diffusion equations. Spectral collocation method based on Lagrange’s basis polynomials to approximate numerical solutions of one-dimensional (1D) space fractional diffusion equations are introduced in this research paper. The proposed form of approximate solution satisfies non-zero Dirichlet’s boundary conditions on both boundaries. Collocation scheme produce a system of first order Ordinary Differential Equations (ODE) from the fractional diffusion equation. We applied this method with four different sets of collocation points to compare their performance.
推荐文章
In-situ nitrogen fate in the vadose zone of different soil types and its implications for groundwate
Vadose zone
Silty-loam
Silty-clay-loam
Nitrogen transformation
Groundwater vulnerability
Stable isotopes
Spatial prediction of landslide susceptibility using GIS-based statistical and machine learning mode
Landslide susceptibility mapping
Statistical model
Machine learning model
Four cases
Using Geomechanical Method to Predict Tectonic Fractures in Low-Permeability Sandstone Reservoirs
Low-permeability sandstone reservoir
Fracture parameters
Geomechanical method
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Comparison of Numerical Approximations of One-Dimensional Space Fractional Diffusion Equation Using Different Types of Collocation Points in Spectral Method Based on Lagrange’s Basis Polynomials
来源期刊 美国计算数学期刊(英文) 学科 数学
关键词 Fractional Diffusion Equation Spectral METHOD COLLOCATION METHOD Lagrange’s BASIS POLYNOMIAL
年,卷(期) 2017,(4) 所属期刊栏目
研究方向 页码范围 469-480
页数 12页 分类号 O1
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Fractional
Diffusion
Equation
Spectral
METHOD
COLLOCATION
METHOD
Lagrange’s
BASIS
POLYNOMIAL
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
美国计算数学期刊(英文)
季刊
2161-1203
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
355
总下载数(次)
1
总被引数(次)
0
期刊文献
论文1v1指导