基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
An investigation of the influence of the relief of a planet on the global circulation of the Earth’s atmosphere is an important problem. Beyond doubt, mountains affect the global circulation of the troposphere, however, their influence on the global circulation of the stratosphere and mesosphere is not evident. In the present study, to investigate the influence of the relief of a planet on the global circulation of the Earth’s stratosphere and mesosphere, the non-hydrostatic mathematical model, developed earlier in the Polar Geophysical Institute, is utilized. Calculations were made for two distinct cases. The relief of the planet was taken into account for the first case. Unlike, the Earth’s surface was assumed to be smooth for the second case. Simulations were performed for the winter period in the northern hemisphere (January). Simulation results, obtained for both considered cases, are qualitatively similar at the levels of stratosphere and mesosphere, however, some noticeable distinctions exist. The horizontal domains exist, where the simulated horizontal and vertical components of the neutral wind velocity, obtained for two considered cases, differ noticeably at the levels of the stratosphere and mesosphere. Some of these horizontal domains are not connected with positions of mountains at the Earth’s surface. On the contrary, some of these horizontal domains are situated above mountains.
推荐文章
Distribution of rare earth elements of granitic regolith under the influence of climate
Rare earth elements
Granitic regolith
Weathering
Ce anomaly
Eu anomaly
Equilibrium thallium isotope fractionation and its constraint on Earth's late veneer
Equilibrium Tl isotope fractionation
Nuclear volume effect
Tl fractionations between silicates and sulfides
Late veneer
First-principles calculation
State of rare earth elements in the rare earth deposits of Northwest Guizhou, China
Kaolinite
Clay rocks
Rare earth deposits
Element existence state
Information extraction
Northwest Guizhou Province
Snowball Earth at low solar luminosity prevented by the ocean–atmosphere coupling
Faint Young Sun paradox
Carbon dioxide
Earth system
Siderite
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Numerical Modeling of the Influence of the Relief of a Planet on the Global Circulation of the Earth’s Stratosphere and Mesosphere
来源期刊 大气和气候科学(英文) 学科 地球科学
关键词 NUMERICAL Simulation STRATOSPHERE MESOSPHERE GLOBAL CIRCULATION
年,卷(期) 2017,(4) 所属期刊栏目
研究方向 页码范围 496-510
页数 15页 分类号 P4
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
NUMERICAL
Simulation
STRATOSPHERE
MESOSPHERE
GLOBAL
CIRCULATION
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
大气和气候科学(英文)
季刊
2160-0414
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
426
总下载数(次)
0
总被引数(次)
0
论文1v1指导