作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Direct and inverse scattering problems connected with the wave equation in non-homogeneous bounded domains constitute challenging actual subjects for both mathematicians and engineers. Among them one can mention, for example, inverse source problems in seismology, nondestructive archeological probing, mine prospecting, inverse initial-value problems in acoustic tomography, etc. In spite of its crucial importance, almost all of the available rigorous investigations concern the case of unbounded simple domains such as layered planar or cylindrical or spherical structures. The main reason for the lack of the works related to non-homogeneous bounded structures is the extreme complexity of the explicit expressions of the Green’s functions. The aim of the present work consists in discovering some universal properties of the Green’s functions in question, which reduce enormously the difficulties arising in various applications. The universality mentioned here means that the properties are not depend on the geometrical and physical properties of the configuration. To this end one considers first the case when the domain is partially-homogeneous. Then the results are generalized to the most general case. To show the importance of the universal properties in question, they are applied to an inverse initial-value problem connected with photo-acoustic tomography.
推荐文章
Effects of slope position and land use on the stability of aggregate-associated organic carbon in ca
Soil organic carbon
Aggregate fraction
Land use
Slope position
Karst
Southwest China
序半群的左平凡Green's关系
偏序半群
L-平凡的
左整除
左同余
完全左同余
序零半群
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Some Universal Properties of the Green’s Functions Associated with the Wave Equation in Bounded Partially-Homogeneous Domains and Their Use in Acoustic Tomography
来源期刊 应用数学(英文) 学科 数学
关键词 Green’s Functions INVERSE Source PROBLEM INVERSE Initial-Value PROBLEM TOMOGRAPHY Photo-Acoustic TOMOGRAPHY Thermo-Acoustic TOMOGRAPHY Wave Equation
年,卷(期) 2017,(4) 所属期刊栏目
研究方向 页码范围 483-499
页数 17页 分类号 O1
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Green’s
Functions
INVERSE
Source
PROBLEM
INVERSE
Initial-Value
PROBLEM
TOMOGRAPHY
Photo-Acoustic
TOMOGRAPHY
Thermo-Acoustic
TOMOGRAPHY
Wave
Equation
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
应用数学(英文)
月刊
2152-7385
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
1878
总下载数(次)
0
总被引数(次)
0
论文1v1指导