基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Background: The rapid development of a variety of devices that emit Radiofrequency Electromagnetic fields (RF-EMF) has sparked growing interest in their interaction with biological systems and the beneficial effects on human health. As a result, investigations have been driven by the potential for therapeutic applications, as well as concern for any possible negative health implications of these EM energies [1-4]. Recent results have indicated specific tuning of experimental and clinical RF exposure may lead to their clinical application toward beneficial health outcomes [5]. Method: In the current study, a mathematical and computer simulation model to analyze a specific RF-EMF exposure on a human head model was developed. Impetus for this research was derived from results of our previous experiments which revealed that Repeated Electromagnetic Field Stimulation (REMFS) decreased the toxic levels of beta amyloid (Aβ) in neuronal cells, thereby suggesting a new potential therapeutic strategy for the treatment of Alzheimer’s disease (AD). Throughout development of the proposed device, experimental variables such as the EM frequency range, specific absorption rate (SAR), penetration depth, and innate properties of different tissues have been carefully considered. Results: RF-EMF exposure to the human head phantom was performed utilizing a Yagi-Uda antenna type possessing high gain (in the order of 10 dbs) at a frequency of 64 MHz and SAR of 0.6 W/Kg. In order to maximize the EM power transmission in one direction, directors were placed in front of the driven element and reflectors were placed behind the driven element. So as to strategically direct the EM field into the center of the brain tissue, while providing field linearity, our analysis considered the field distribution for one versus four antennas. Within the provided dimensions of a typical human brain, results of the Bioheat equation within COMSOL Multiphysics version 5.2a software demonstrated less than a 1 m°K increase from the absorbed EM power.
推荐文章
Phantom Omni机器人的自适应模糊滑模控制
Phantom Omni机器人
滑模控制
模糊系统
自适应律
位置轨迹跟踪
Are spatial distributions of major elements in soil influenced by human landscapes?
Major elements
Spatial distribution
Geographical background
Human landscape
Geographic information system
Remote sensing
Source and composition of sedimentary organic matter in the head of Three Gorges Reservoir: a multip
Three Gorges reservior
Sedimentary organic matter
δ13C
Lignin phenols
Lipid biomarkers
Groundwater quality assessment using multivariate analysis, geostatistical modeling, and water quali
Groundwater
Multivariate analysis
Geostatistical modeling
Geochemical modeling
Mineralization
Ordinary Kriging
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Antenna Design and SAR Analysis on Human Head Phantom Simulation for Future Clinical Applications
来源期刊 生物医学工程(英文) 学科 医学
关键词 ANTENNA NEURO ALZHEIMER Disease Diagnosis COMSOL SAR.
年,卷(期) 2017,(9) 所属期刊栏目
研究方向 页码范围 421-430
页数 10页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
ANTENNA
NEURO
ALZHEIMER
Disease
Diagnosis
COMSOL
SAR.
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
生物医学工程(英文)
月刊
1937-6871
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
252
总下载数(次)
1
总被引数(次)
0
论文1v1指导