基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
With the rapid development of the society,water contamination events cause great loss if the accidents happen in the water supply system.A large number of sensor nodes of water quality are deployed in the water supply network to detect and warn the contamination events to prevent pollution from speading.If all of sensor nodes detect and transmit the water quality data when the contamination occurs,it results in the heavy communication overhead.To reduce the communication overhead,the Connected Dominated Set construction algorithm-Rule K,is adopted to select a part fo sensor nodes.Moreover,in order to improve the detection accuracy,a Spatial-Temporal Abnormal Event Detection Algorithm with Multivariate water quality data(M-STAEDA)was proposed.In M-STAEDA,first,Back Propagation neural network models are adopted to analyze the multiple water quality parameters and calculate the possible outliers.Then,M-STAEDA algorithm determines the potential contamination events through Bayesian sequential analysis to estimate the probability of a contamination event.Third,it can make decision based on the multiple event probabilities fusion.Finally,a spatial correlation model is applied to determine the spatial-temporal contamination event in the water supply networks.The experimental results indicate that the proposed M-STAEDA algorithm can obtain more accuracy with BP neural network model and improve the rate of detection and the false alarm rate,compared with the temporal event detection of Single Variate Temporal Abnormal Event Detection Algorithm(M-STAEDA).
推荐文章
Groundwater quality assessment using multivariate analysis, geostatistical modeling, and water quali
Groundwater
Multivariate analysis
Geostatistical modeling
Geochemical modeling
Mineralization
Ordinary Kriging
Hydrogeochemical processes and multivariate analysis for groundwater quality in the arid Maadher reg
Groundwater quality
Hydrogeochemical processes
Multivariate analysis
Salinity
Mio-Plio
Quaternary aquifer
A study of groundwater irrigation water quality in south-central Bangladesh: a geo-statistical model
Semivariogram
Ordinary kriging model
Salinity
Irrigation water quality index
GIS
Hydrochemistry
Temporal and spatial characteristics of dissolved organic carbon in the Wujiang River, Southwest Chi
Carbon cycle
Dissolved organic carbon
Dam-building effect
The Wujiang River
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Spatial-Temporal Event Detection Method with Multivariate Water Quality Data
来源期刊 国际计算机前沿大会会议论文集 学科 社会科学
关键词 Spatial-temporal DATA EVENT detection Mutlivariate WATER quality DATA DATA analysis CONNECTED dominating SET
年,卷(期) 2017,(1) 所属期刊栏目
研究方向 页码范围 159-161
页数 3页 分类号 C5
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Spatial-temporal
DATA
EVENT
detection
Mutlivariate
WATER
quality
DATA
DATA
analysis
CONNECTED
dominating
SET
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
国际计算机前沿大会会议论文集
半年刊
北京市海淀区西三旗昌临801号
出版文献量(篇)
616
总下载数(次)
6
总被引数(次)
0
期刊文献
相关文献
推荐文献
论文1v1指导