基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
目的 提出一种基于改进算法的支持向量机模型(PSO-SVM),利用边坡的参数分析预测边坡稳定性.方法 利用支持向量机有效解决小样本、高维数、非线性等问题的优势,建立粒子群算法(PSO)优化的支持向量机模型,粒子群算法优化支持向量机参数,模型中边坡几何参数和强度参数:边坡角β、边坡高度H、岩石容重γ、黏聚力c、内摩擦角φ以及孔隙水压力ru作为输入参数,边坡稳定性系数FS和边坡稳定状态S作为输出参数.结果 PSO-SVM模型与网格搜索算法(GS)、遗传算法(GA)优化SVM模型以及人工神经网络ANN模型相比,具有更高的分类精度和更强的预测能力.结论 PSO-SVM模型能够准确地获得边坡的稳定性系数,评价其稳定性,在边坡稳定分析和预测中具有良好的实际应用价值.
推荐文章
基于灰色最小二乘支持向量机的边坡位移预测
边坡位移
灰色模型
最小二乘支持向量机
遗传算法
时间序列
进化-最小二乘支持向量机的边坡稳定性估计
边坡稳定
最小二乘支持向量机
遗传算法
参数选择
支持向量机在时间序列预测中的应用
支持向量机
BP神经网络
时间序列预测
支持向量机在GDP回归预测中的应用研究
支持向量机
数据挖掘
国民生产总值
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 支持向量机在边坡稳定分析预测的应用
来源期刊 沈阳建筑大学学报(自然科学版) 学科 地球科学
关键词 边坡稳定 粒子群算法 支持向量机 预测
年,卷(期) 2017,(6) 所属期刊栏目 土木工程
研究方向 页码范围 1004-1010
页数 7页 分类号 TU457|P642.22
字数 语种 中文
DOI 10.11717/j.issn:2095-1922.2017.06.06
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (68)
共引文献  (31)
参考文献  (12)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1960(1)
  • 参考文献(1)
  • 二级参考文献(0)
1965(1)
  • 参考文献(1)
  • 二级参考文献(0)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(4)
  • 参考文献(0)
  • 二级参考文献(4)
2000(3)
  • 参考文献(0)
  • 二级参考文献(3)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(4)
  • 参考文献(0)
  • 二级参考文献(4)
2005(4)
  • 参考文献(1)
  • 二级参考文献(3)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(7)
  • 参考文献(0)
  • 二级参考文献(7)
2008(6)
  • 参考文献(1)
  • 二级参考文献(5)
2009(4)
  • 参考文献(1)
  • 二级参考文献(3)
2010(6)
  • 参考文献(0)
  • 二级参考文献(6)
2011(5)
  • 参考文献(0)
  • 二级参考文献(5)
2012(7)
  • 参考文献(0)
  • 二级参考文献(7)
2013(3)
  • 参考文献(2)
  • 二级参考文献(1)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(3)
  • 参考文献(3)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
边坡稳定
粒子群算法
支持向量机
预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
沈阳建筑大学学报(自然科学版)
双月刊
2095-1922
21-1578/TU
大16开
沈阳市浑南新区浑南东路9号
8-44
1979
chi
出版文献量(篇)
3683
总下载数(次)
5
总被引数(次)
32666
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导