基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Multipeutics is the simultaneous application of m ≥ 4 cancer treatments. m = 4 is quadrapeutics, which was invented by researchers at Rice University, Northeastern University, MD Anderson Cancer Centre and China Medical University, see [1]. Multipeutics is our idea. From section 6 Summary, it follows that multipeutics can be more potent than quadrapeutics by comparing these two mathematical models. The first two treatments in quadrapeutics are systemically administered nano gold particles G and lysosomal chemo therapeutic drug D. They form mixed clusters M primarily in cancer cells and can be excited by a laser pulse, the third treatment, to form plasmonic nanobubbles N. These nanobubbles can kill the cancer cells by mechanical impact. If they do not the chemo therapeutic drug can be released into the cytoplasm, which might be lethal to the cancer cell. The fourth treatment is x rays X and the cancer cells have been sensitized to x rays by the treatment. We present an ODE (ordinary differential equations) model of quadrapeutics and of multipeutics, which is quadrapeutics and n ≥ 1 immune or chemo therapies. In the present paper we have found a polynomial p of degree at most 2(n + 3), such that a singular point (C, D, G, M, N, I1, …, In) will have p(M) = 0 Here I1, …, In are immune or chemo therapies. So this gives us candidates for singular points. Quadrapeutics is treated extensively. We find in theorem 3 a polynomium s of degree at most six in M such that a positive singular point (C, D, G, M, N) of the quadrapeutics system will have s(M) = 0. The main theorem of the present paper is the multipeutics theorem, saying that the more treatments we apply the lower the cancer burden, even if we take the doses of each treatment smaller. From the proof of this theorem, we can say, that quadrapeutics can outperform chemo radiation if the nanobubble kill rate k21 is sufficiently big. See also Figure 1 and Figure 2 and the text explaining them.
推荐文章
Incorporation of silica into the goethite structure: a microscopic and spectroscopic study
Quartz
Goethite
Twinned goethite
Microscopic characterization (FESEM and TEM)
FT-IR spectroscopy
Elemental characteristics and paleoenvironment reconstruction: a case study of the Triassic lacustri
Trace elements
Occurrence mode
Paleoenvironment
Zhangjiatan oil shale
Yanchang Formation
Ordos Basin
Soil organic carbon dynamics study bias deduced from isotopic fractionation in corn plant
Bias of SOC dynamics study
Isotopic fractionation in corn
Isotope mass balance equation
Bias range
A combined IR and XRD study of natural well crystalline goethites(α-FeOOH)
Crystallinity
Goethite
IR-spectrometry
X-ray diffraction
XRD rietveld refinement
Characterization
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 A Study on Multipeutics
来源期刊 应用数学(英文) 学科 医学
关键词 CANCER MASS Action KINETIC SYSTEM Quadrapeutics IMMUNE THERAPY
年,卷(期) 2017,(5) 所属期刊栏目
研究方向 页码范围 746-773
页数 28页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
CANCER
MASS
Action
KINETIC
SYSTEM
Quadrapeutics
IMMUNE
THERAPY
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
应用数学(英文)
月刊
2152-7385
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
1878
总下载数(次)
0
总被引数(次)
0
论文1v1指导