基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
In this paper, the performance of existing biased estimators (Ridge Estimator (RE), Almost Unbiased Ridge Estimator (AURE), Liu Estimator (LE), Almost Unbiased Liu Estimator (AULE), Principal Component Regression Estimator (PCRE), r-k class estimator and r-d class estimator) and the respective predictors were considered in a misspecified linear regression model when there exists multicollinearity among explanatory variables. A generalized form was used to compare these estimators and predictors in the mean square error sense. Further, theoretical findings were established using mean square error matrix and scalar mean square error. Finally, a numerical example and a Monte Carlo simulation study were done to illustrate the theoretical findings. The simulation study revealed that LE and RE outperform the other estimators when weak multicollinearity exists, and RE, r-k class and r-d class estimators outperform the other estimators when moderated and high multicollinearity exist for certain values of shrinkage parameters, respectively. The predictors based on the LE and RE are always superior to the other predictors for certain values of shrinkage parameters.
推荐文章
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Performance of Existing Biased Estimators and the Respective Predictors in a Misspecified Linear Regression Model
来源期刊 统计学期刊(英文) 学科 数学
关键词 Misspecified Regression Model GENERALIZED Biased ESTIMATOR GENERALIZED PREDICTOR Mean SQUARE ERROR Matrix SCALAR Mean SQUARE ERROR
年,卷(期) tjxqkyw_2017,(5) 所属期刊栏目
研究方向 页码范围 876-900
页数 25页 分类号 O1
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Misspecified
Regression
Model
GENERALIZED
Biased
ESTIMATOR
GENERALIZED
PREDICTOR
Mean
SQUARE
ERROR
Matrix
SCALAR
Mean
SQUARE
ERROR
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
统计学期刊(英文)
半月刊
2161-718X
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
584
总下载数(次)
0
论文1v1指导