Empirical mode decomposition (EMD) is a data-driven and multi-scale transform theory, and it is a nonlinear and non-stationary signal processing theory. But each EMD decomposition theory has its advantages and disadvantages. Synthetic aperture radar (SAR) imaging is an important remote sensing technique to obtain the change information, and SAR image data belongs to non-stationary signal. So EMD is very suitable for SAR image processing. There are two kinds of typical EMD theories, which are the ensemble empirical mode decomposition (EEMD) and bidimensional empirical mode decomposition (BEMD). Based on the deep study of the two methods, this paper proposed a new SAR image change detection algorithm, which is called the FCD-EMD algorithm, i.e. fusion change detection based on EMD. So FCD-EMD algorithm can obtain more accurate information, which not only includes the directional information obtained by EEMD, but also can contain the spatial information got by BEMD. The main contribution of the FCD-EMD algorithm is to fuse the detail information in different directions, so that the results obtained are more accurate than the individual method. On the other hand, it can reduce the influence of speckle noise in SAR images by feature selections. The actual SAR image data verify the algorithm proposed in this paper and good experimental results are obtained, which show that the new method is feasible.