基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了提高短期风速预测精度,提出一种变权系数的支持向量机组合风速预测模型.选择基于不同核函数的支持向量机作为单项预测模型以保证单项模型之间的差异性,对核参数用粒子群算法寻优选取以保证各单项模型的精确性.组合预测方法采用以预测误差平方和最小为准则的可变加权系数组合预测方法,以计算各单项模型在风速预测不同时刻的权系数.仿真实验表明,所建立的变权组合预测模型在短期风速预测上具有良好的预测效果,预测精度优于各单项模型和固定权系数的组合模型.
推荐文章
卡尔曼滤波修正的风电场短期功率预测模型
卡尔曼滤波
神经网络
功率预测
风力发电
一种改进组合神经网络的超短期风速预测方法研究
风力发电
超短期风速预测
BP神经网络
长短期记忆(LSTM)神经网络
差分进化(DE)算法
风电场短期风速的集成学习预测模型
短期风速预测
集成学习
动态权重
隶属度函数
支持向量机
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 一种风电场短期风速组合预测模型
来源期刊 太阳能学报 学科 工学
关键词 风速预测 支持向量机 组合预测 变权系数 混沌相空间重构
年,卷(期) 2017,(6) 所属期刊栏目
研究方向 页码范围 1510-1516
页数 7页 分类号 TM614
字数 4721字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 王东风 华北电力大学自动化系 170 3490 34.0 51.0
2 韩璞 华北电力大学自动化系 272 4579 35.0 54.0
3 张妍 华北电力大学自动化系 28 107 6.0 9.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (52)
共引文献  (532)
参考文献  (13)
节点文献
引证文献  (13)
同被引文献  (48)
二级引证文献  (6)
1969(1)
  • 参考文献(1)
  • 二级参考文献(0)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(0)
  • 二级参考文献(2)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2003(4)
  • 参考文献(2)
  • 二级参考文献(2)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(3)
  • 参考文献(1)
  • 二级参考文献(2)
2007(9)
  • 参考文献(1)
  • 二级参考文献(8)
2008(5)
  • 参考文献(1)
  • 二级参考文献(4)
2009(5)
  • 参考文献(1)
  • 二级参考文献(4)
2010(6)
  • 参考文献(1)
  • 二级参考文献(5)
2011(7)
  • 参考文献(2)
  • 二级参考文献(5)
2012(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(4)
  • 引证文献(4)
  • 二级引证文献(0)
2019(6)
  • 引证文献(6)
  • 二级引证文献(0)
2020(8)
  • 引证文献(2)
  • 二级引证文献(6)
研究主题发展历程
节点文献
风速预测
支持向量机
组合预测
变权系数
混沌相空间重构
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
太阳能学报
月刊
0254-0096
11-2082/TK
大16开
北京市海淀区花园路3号
2-165
1980
chi
出版文献量(篇)
7068
总下载数(次)
14
论文1v1指导