基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
颜色是车辆识别中广泛应用的主要线索之一,在智能交通系统中扮演着重要的角色.受光照变化、噪声、环境等复杂因素的影响,传统的车辆颜色识别方法难以取得理想的识别效果.利用卷积神经网络(CNN)的优越识别性能,提出了一种基于卷积神经网络的监控场景下车辆颜色识别方法.基于传统的CNN原理设计了车色识别专用深度网络架构,直接通过CNN学习基于颜色分布的分类模型.与其他基于深度学习的车色识别方法相比,提出的用于车色识别的专用深度网络,具有参数少、识别速度快、识别精度高等优点.实验结果表明,在Chen等公布的标准数据集上,与最新的研究成果相比,平均识别精度提高约0.77%,识别速度提高14倍左右.
推荐文章
一种基于深度卷积神经网络的车辆颜色识别方法
深度学习
卷积神经网络
颜色识别
智能交通
基于卷积神经网络的细胞识别
细胞识别
卷积神经网络
深度学习
池化层
基于卷积神经网络的车牌识别
卷积神经网络
车牌识别
模型训练
权值共享
基于改进卷积神经网络的手势识别
改进卷积神经网络
手势识别
准确率
图像处理
过拟合
Dropout
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于卷积神经网络的监控场景下车辆颜色识别
来源期刊 测控技术 学科 工学
关键词 车辆颜色识别 卷积神经网络 图像处理 智能交通系统
年,卷(期) 2017,(10) 所属期刊栏目 数据采集与处理
研究方向 页码范围 11-14
页数 4页 分类号 TP391
字数 3139字 语种 中文
DOI 10.3969/j.issn.1000-8829.2017.10.004
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 卓力 北京工业大学信号与信息处理研究室 94 839 14.0 24.0
2 张强 北京工业大学信号与信息处理研究室 21 139 8.0 11.0
3 李嘉锋 北京工业大学信号与信息处理研究室 8 91 4.0 8.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (22)
共引文献  (9)
参考文献  (6)
节点文献
引证文献  (10)
同被引文献  (26)
二级引证文献  (6)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(5)
  • 参考文献(0)
  • 二级参考文献(5)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(4)
  • 参考文献(1)
  • 二级参考文献(3)
2014(5)
  • 参考文献(2)
  • 二级参考文献(3)
2015(2)
  • 参考文献(1)
  • 二级参考文献(1)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(2)
  • 参考文献(2)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(3)
  • 引证文献(3)
  • 二级引证文献(0)
2019(6)
  • 引证文献(5)
  • 二级引证文献(1)
2020(7)
  • 引证文献(2)
  • 二级引证文献(5)
研究主题发展历程
节点文献
车辆颜色识别
卷积神经网络
图像处理
智能交通系统
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
测控技术
月刊
1000-8829
11-1764/TB
大16开
北京2351信箱《测控技术》杂志社
82-533
1980
chi
出版文献量(篇)
8430
总下载数(次)
24
总被引数(次)
55628
论文1v1指导