基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
Text extraction is the key step in the character recognition;its accuracy highly relies on the location of the text region. In this paper, we propose a new method which can find the text location automatically to solve some regional problems such as incomplete, false position or orientation deviation occurred in the low-contrast image text extraction. Firstly, we make some pre-processing for the original image, including color space transform, contrast-limited adaptive histogram equalization, Sobel edge detector, morphological method and eight neighborhood processing method (ENPM) etc., to provide some results to compare the different methods. Secondly, we use the connected component analysis (CCA) method to get several connected parts and non-connected parts, then use the morphology method and CCA again for the non-connected part to erode some noises, obtain another connected and non-connected parts. Thirdly, we compute the edge feature for all connected areas, combine Support Vector Machine (SVM) to classify the real text region, obtain the text location coordinates. Finally, we use the text region coordinate to extract the block including the text, then binarize, cluster and recognize all text information. At last, we calculate the precision rate and recall rate to evaluate the method for more than 200 images. The experiments show that the method we proposed is robust for low-contrast text images with the variations in font size and font color, different language, gloomy environment, etc.
推荐文章
Using Geomechanical Method to Predict Tectonic Fractures in Low-Permeability Sandstone Reservoirs
Low-permeability sandstone reservoir
Fracture parameters
Geomechanical method
基于 EPICS 的 J-TEXT CODAC系统
CODAC系统
托卡马克
ITER
EPICS
J-TEXT托卡马克数据采集系统设计
J-TEXT
数据采集
MDSplus
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 An Automatic Text Region Positioning Method for the Low-Contrast Image
来源期刊 电脑和通信(英文) 学科 医学
关键词 Low-Contrast IMAGE TEXT REGION POSITIONING CONNECTED Component Analysis SVM
年,卷(期) 2017,(10) 所属期刊栏目
研究方向 页码范围 36-49
页数 14页 分类号 R73
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Low-Contrast
IMAGE
TEXT
REGION
POSITIONING
CONNECTED
Component
Analysis
SVM
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电脑和通信(英文)
月刊
2327-5219
武汉市江夏区汤逊湖北路38号光谷总部空间
出版文献量(篇)
783
总下载数(次)
0
总被引数(次)
0
论文1v1指导