This study has tried to prove the ability of remote sensing techniques to extract information necessary for preparation of geological mapping of the earth’s surface using multi-spectral satellite images which are rich sources of Earth’s surface information. In this study, the surface geological mappings of Zefreh region have been investigated through ASTER, OLI, and IRS-PAN remote sensing data. To prepare the geological map, preprocessing steps and reducing noises from data using MNF algorithm were firstly carried out. Then a set of processing algorithms and image classification methods are included;the band rationing, color composite and pixel classification based on maximum likelihood, spectral and sub-pixel classification methods of spectral angle mapper (SAM), spectral feature fitting (SFF), linear spectral differentiation (LSU), hill-shade images and automatic lineament extraction were used. Confusion matrix was formed for all classified images through control points were randomly selected from 1:25,000 map of the region to determine the accuracy of obtained results, which indicated the maximum accuracy (up to 90%) of output images. Comparing the results obtained from these methods with the map prepared by ground operations confirmed accuracy results. Finally, the surface geology and fault map of Zafreh region was produced by combining detected geological formations and tectonic lineaments.