原文服务方: 成都大学学报(自然科学版)       
摘要:
针对大数据集上学习的深度人脸模型在实践中的相关问题,提出一种通过迁移一个预训练的深度人脸模型到特定的任务来解决该问题的方案:将深度人脸模型学习的分层表示作为源模型,然后在一个小训练集上学习高层表示以得到一个特定于任务的目标模型;在公共的小数据集及采集的真实人脸数据集上的实验表明,所采用的迁移学习方法有效且高效;经验性地探索了一个重要的开放问题——深度模型不同层特征的特点及其可迁移能力,认为越底层的特征越局部、越通用,而越高层的特征则越全局、越特定,具有更好的类内不变性和类间区分性;无监督的特征可视化与有监督的人脸识别实验结果都能较好地支持上述观点.
推荐文章
一种基于融合深度卷积神经网络与度量学习的人脸识别方法
多Inception结构
深度卷积神经网络
度量学习方法
深度人脸识别
特征提取
损失函数融合
基于视频监控的人脸识别方法
人脸识别
监控视频
人脸序列
协同识别
基于SLBP深度信念网络的人脸识别研究
显著局部二值模式
特征提取
深度信念网络
网络训练
深度学习
人脸识别
基于LLE算法的人脸识别方法
子空间分析
局部线性嵌入
非线性降维
人脸识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于深度迁移学习的人脸识别方法研究
来源期刊 成都大学学报(自然科学版) 学科
关键词 深度学习 人脸识别 迁移学习 不变性 区分性
年,卷(期) 2017,(2) 所属期刊栏目 信息科学与工程
研究方向 页码范围 151-156
页数 6页 分类号 TP391.41
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 余化鹏 成都大学信息科学与工程学院 4 19 2.0 4.0
2 张朋 成都大学信息科学与工程学院 1 14 1.0 1.0
3 朱进 成都大学信息科学与工程学院 1 14 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (2)
节点文献
引证文献  (14)
同被引文献  (43)
二级引证文献  (21)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(8)
  • 引证文献(6)
  • 二级引证文献(2)
2019(22)
  • 引证文献(6)
  • 二级引证文献(16)
2020(4)
  • 引证文献(1)
  • 二级引证文献(3)
研究主题发展历程
节点文献
深度学习
人脸识别
迁移学习
不变性
区分性
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
成都大学学报(自然科学版)
季刊
1004-5422
51-1216/N
16开
1982-01-01
chi
出版文献量(篇)
1947
总下载数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导