基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
以锂电池电化学-电路等效组合模型为基础,研究电池荷电状态(SOC)和健康状况(SOH)联合估计算法.电池组合模型包含电化学等效模型和电路等效模型两部分,两个RC并联电路分别表示电池工作过程中的瞬态响应和稳态响应.针对电池模型参数和性能参数的非线性特征,提出基于滑动窗滤波模型的非线性参数估计方法,该方法适用于锂电池的管理系统.同时,在模型参数和性能参数估计值的基础上,提出基于Kalman算法的电池SOC/SOH自适应在线联合估计方法.实验结果显示,新算法较好地解决了锂电池非线性模型引起的计算误差,保证电池SOC/SOH估计结果的实时性和有效性.
推荐文章
双自适应衰减卡尔曼滤波锂电池荷电状态估计
锂离子电池
荷电状态
自适应卡尔曼滤波
扩展卡尔曼滤波
双自适应
基于IMM-UPF的锂电池寿命估计
锂电池
健康状态
经验模型
交互式多模型
无迹粒子滤波
基于RTS-IEKPF算法的锂电池SOC估算
锂电池
SOC估算
RTS-IEKPF
粒子滤波
最优平滑
实验验证
基于多元线性回归模型的锂电池充电SOC预测
锂电池
SOC
多元线性回归
预测
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于滑动窗自适应滤波的锂电池SOC/SOH联合估计
来源期刊 电源技术 学科 工学
关键词 锂电池 滑动窗滤波 SOC SOH Kalman 参数估计
年,卷(期) 2017,(1) 所属期刊栏目 研究与设计
研究方向 页码范围 17-20,172
页数 5页 分类号 TM912
字数 4084字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陆赟豪 4 16 2.0 4.0
2 汪秋婷 浙江大学城市学院 26 76 6.0 7.0
3 姜银珠 6 15 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (5)
共引文献  (23)
参考文献  (6)
节点文献
引证文献  (5)
同被引文献  (6)
二级引证文献  (0)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(2)
  • 参考文献(2)
  • 二级参考文献(0)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(2)
  • 参考文献(2)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(3)
  • 引证文献(3)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
锂电池
滑动窗滤波
SOC
SOH
Kalman
参数估计
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电源技术
月刊
1002-087X
12-1126/TM
大16开
天津296信箱44分箱
6-28
1977
chi
出版文献量(篇)
9323
总下载数(次)
56
总被引数(次)
55810
论文1v1指导