原文服务方: 东北林业大学学报       
摘要:
针对现阶段对已出现森林虫害数据未能完成全面、及时地统计,以及难以准确预测森林虫害爆发的潜在外来诱因的问题,提出使用面向Web挖掘的主题网络爬虫搜集病虫害相关数据,并利用大数据挖掘频繁模式与关联规则的Apriori算法,挖掘结果得到满足最小支持度阈值的频繁2项集,并进一步从中筛选2种重要的特征子集,包括害虫与寄主之间的频繁模式,寄主与外来树种之间的频繁模式.解决了已出现的病虫害数据难以统计的难题;同时预测出针对某一地区害虫可能诱发森林虫害的外来树种.结果表明该方法能达到可靠、有效的森林虫害预测目的.
推荐文章
基于矩阵的Apriori改进算法研究
数据挖掘
关联规则
矩阵
Apriori算法
频繁项集
基于Apriori优化算法的IDS模型研究
关联规则
数据挖掘
IDS
Apriori
基于压缩矩阵方式的Apriori改进算法
数据挖掘
关联规则
Apriori算法
压缩矩阵
频繁项集
基于SOA的改进型Apriori算法
面向服务构架
关联规则
频繁项集
Apriori算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于Apriori算法的森林虫害预测方法
来源期刊 东北林业大学学报 学科
关键词 Apriori算法 频繁模式 特征子集 病虫害预测
年,卷(期) 2017,(8) 所属期刊栏目
研究方向 页码范围 93-96
页数 4页 分类号 S763|TP311.13
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 李丹 55 321 10.0 15.0
2 姚宇 8 35 4.0 5.0
3 齐航 3 13 2.0 3.0
4 张子恺 2 9 1.0 2.0
5 王上 1 9 1.0 1.0
6 蔡仕伟 1 9 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (16)
共引文献  (40)
参考文献  (8)
节点文献
引证文献  (9)
同被引文献  (25)
二级引证文献  (11)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(3)
  • 参考文献(1)
  • 二级参考文献(2)
2004(3)
  • 参考文献(1)
  • 二级参考文献(2)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(2)
  • 参考文献(2)
  • 二级参考文献(0)
2010(1)
  • 参考文献(1)
  • 二级参考文献(0)
2011(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(1)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(4)
  • 引证文献(4)
  • 二级引证文献(0)
2019(14)
  • 引证文献(4)
  • 二级引证文献(10)
2020(2)
  • 引证文献(1)
  • 二级引证文献(1)
研究主题发展历程
节点文献
Apriori算法
频繁模式
特征子集
病虫害预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
东北林业大学学报
月刊
1000-5382
23-1268/S
大16开
1957-01-01
chi
出版文献量(篇)
7235
总下载数(次)
0
总被引数(次)
68015
论文1v1指导