基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
For the problem that the termination condition of artificial immune network algorithm aiNet is difficult to determine, an intelligent artificial immune network algorithm S-aiNet is proposed. The S-aiNet determines whether the network is saturated by monitoring the change trend of new generation population in the iterative process according to the affinity of the new generation of network cells and existing cells. The algorithm improves the adaptability of aiNet and reduces the number of parameters. For the problem that the network of aiNet updates slowly, a regional search optimization algorithm AS-aiNet is proposed. The AS-aiNet equally divides the antibody space where the network cells and antigen located, and only searches the antibody cells located in the same region as antigens in the immune response. The AS-aiNet reduces the workload of search in the process of immune response and effectively enhances the time efficiency of algorithm operation. Adopting public data set, experiments show that the time efficiency of AS-aiNet is 10% better than that of aiNet.
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 Data Clustering Algorithm Based on Artificial Immune Network
来源期刊 国际计算机前沿大会会议论文集 学科 社会科学
关键词 Artificial IMMUNE Data CLUSTERING STOPPING RULE REGION
年,卷(期) 2017,(2) 所属期刊栏目
研究方向 页码范围 121-122
页数 2页 分类号 C5
字数 语种
DOI
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (0)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
Artificial
IMMUNE
Data
CLUSTERING
STOPPING
RULE
REGION
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
国际计算机前沿大会会议论文集
半年刊
北京市海淀区西三旗昌临801号
出版文献量(篇)
616
总下载数(次)
6
总被引数(次)
0
论文1v1指导