基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对现有的网上古玩图片分类算法需要人工设计特征、依赖个人经验的不足,提出一种基于卷积神经网络的分类方法.将背景分离后的图片输入网络,自动提取特征进行分类,在达到较好分类结果的同时网络结构更加简单,并且设置合适的特征图个数使网络取得较好的识别率.实验结果表明,该方法应用卷积神经网络能够解决网上古玩图片分类问题,与传统卷积神经网络相比网络结构更简单、识别率更高;与常用的Hog特征相比,在测试时间相近的情况下该方法识别率更高.
推荐文章
基于卷积神经网络的植物图像分类方法研究
卷积神经网络
图像特征
图像分类
全卷积网络
植物图像
数据集
基于多层卷积神经网络的SAR图像分类方法
雷达目标识别
卷积神经网络
深度学习
MSTAR数据
基于卷积神经网络的图片风格转换系统
Python
卷积式神经网络(CNN)
深度学习
图片风格迁移
VGGNet
Neural Style
基于深度卷积神经网络的车标分类
深度学习
神经网络
车标分类
图像识别
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于卷积神经网络的古玩图片分类方法
来源期刊 软件导刊 学科 工学
关键词 深度学习 卷积神经网络 古玩图片 图像识别
年,卷(期) 2017,(5) 所属期刊栏目 图像学与辅助设计
研究方向 页码范围 174-178
页数 5页 分类号 TP317.4
字数 5290字 语种 中文
DOI 10.11907/rjdk.162768
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 顾亚风 杭州电子科技大学通信工程学院 5 46 3.0 5.0
2 叶学义 杭州电子科技大学通信工程学院 40 202 8.0 11.0
3 夏经文 杭州电子科技大学通信工程学院 5 25 3.0 5.0
4 夏胡云 杭州电子科技大学通信工程学院 3 16 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (57)
共引文献  (457)
参考文献  (12)
节点文献
引证文献  (6)
同被引文献  (6)
二级引证文献  (1)
1961(1)
  • 参考文献(1)
  • 二级参考文献(0)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(2)
  • 参考文献(0)
  • 二级参考文献(2)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(2)
  • 参考文献(1)
  • 二级参考文献(1)
1998(2)
  • 参考文献(1)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(3)
  • 参考文献(1)
  • 二级参考文献(2)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(8)
  • 参考文献(0)
  • 二级参考文献(8)
2010(5)
  • 参考文献(0)
  • 二级参考文献(5)
2011(8)
  • 参考文献(0)
  • 二级参考文献(8)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(5)
  • 参考文献(1)
  • 二级参考文献(4)
2014(4)
  • 参考文献(4)
  • 二级参考文献(0)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(5)
  • 引证文献(5)
  • 二级引证文献(0)
2019(2)
  • 引证文献(1)
  • 二级引证文献(1)
研究主题发展历程
节点文献
深度学习
卷积神经网络
古玩图片
图像识别
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
软件导刊
月刊
1672-7800
42-1671/TP
16开
湖北省武汉市
38-431
2002
chi
出版文献量(篇)
9809
总下载数(次)
57
总被引数(次)
30383
论文1v1指导