原文服务方: 现代电子技术       
摘要:
从各向异性角度分析了P-M模型、L1范式(TV模型)、L2范式(调和模型)的不足,通过扩散模型建立超分辨率重建的偏微分方程,提出一种非线性各向异性和超分辨率重建组合的模型.该模型在图像平坦区域具有线性各向同性扩散,能够有效消除噪声,在图像边缘区域具有非线性各向异性扩散保留边缘,有效减少了滤波产生的阶梯效应和P-M模型过渡平滑忽略细节的现象.仿真结果表明,该模型能够有效地提高图像重建质量,能在消除噪声的同时保留边缘,具有很好的鲁棒性.
推荐文章
基于自适应规整化方法的图像超分辨率重建
超分辨率重建
Gauss-Gibbs随机场
参数估计
自适应规整化
基于稀疏表示的自适应图像超分辨率重建算法
超分辨率
自适应正则化
联合字典
基于HMRF的自适应超分辨率图像重建算法
超分辨率
图像重建
Huber-Markov随机场
基于自适应半耦合字典学习的超分辨率图像重建
超分辨率重建
半耦合字典学习
自适应
核范
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于扩散的自适应超分辨率重建
来源期刊 现代电子技术 学科
关键词 P-M模型 L1范式 各向同性 各向异性 超分辨率重建
年,卷(期) 2017,(10) 所属期刊栏目 图形图像处理
研究方向 页码范围 107-110
页数 4页 分类号 TN911-34|TP391
字数 语种 中文
DOI 10.16652/j.issn.1004-373x.2017.10.029
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 吕晓琪 内蒙古科技大学信息工程学院 82 506 13.0 16.0
2 谷宇 内蒙古科技大学信息工程学院 36 188 9.0 12.0
3 李婷 内蒙古科技大学信息工程学院 7 1 1.0 1.0
4 付龙 内蒙古科技大学信息工程学院 2 1 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (54)
共引文献  (36)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1970(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(2)
  • 参考文献(0)
  • 二级参考文献(2)
1990(1)
  • 参考文献(1)
  • 二级参考文献(0)
1991(3)
  • 参考文献(0)
  • 二级参考文献(3)
1992(2)
  • 参考文献(0)
  • 二级参考文献(2)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(4)
  • 参考文献(0)
  • 二级参考文献(4)
2002(5)
  • 参考文献(1)
  • 二级参考文献(4)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(3)
  • 参考文献(0)
  • 二级参考文献(3)
2007(4)
  • 参考文献(2)
  • 二级参考文献(2)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(5)
  • 参考文献(1)
  • 二级参考文献(4)
2010(6)
  • 参考文献(0)
  • 二级参考文献(6)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(6)
  • 参考文献(2)
  • 二级参考文献(4)
2013(4)
  • 参考文献(1)
  • 二级参考文献(3)
2014(1)
  • 参考文献(1)
  • 二级参考文献(0)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
P-M模型
L1范式
各向同性
各向异性
超分辨率重建
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代电子技术
半月刊
1004-373X
61-1224/TN
大16开
1977-01-01
chi
出版文献量(篇)
23937
总下载数(次)
0
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导