基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为精确提取滚动轴承振动信号的故障特征,提出了一种基于参数优化多尺度排列熵与模糊C均值聚类的故障诊断方法.首先,针对多尺度排列熵算法的参数确定问题,综合考虑参数之间的交互影响,基于遗传算法与微粒群算法对参数进行优化;然后,利用参数优化多尺度排列熵对滚动轴承振动信号进行特征提取,并通过模糊C均值聚类确定标准聚类中心;最后,采用Euclid贴近度对故障样本进行分类.通过分类系数与平均模糊熵检验聚类效果,证明了多尺度排列熵参数优化的有效性;与单一尺度排列熵、样本熵结合模糊C均值聚类方法的对比分析表明,基于参数优化多尺度排列熵与模糊C均值聚类的故障诊断方法具有更高的故障识别率和更广阔的适用范围.
推荐文章
基于小波变换的滚动轴承故障诊断分析
小波分析
滚动轴承
故障诊断
滚动轴承故障诊断研究
滚动轴承
MATLAB软件
BP神经网络
故障诊断
基于DE-LSSVM的滚动轴承故障诊断
集合经验模式分解
能量熵
差分进化算法
最小二乘支持向量机
故障诊断
基于混合域特征集与加权KNN的滚动轴承故障诊断
混合域特征集
加权K-近邻分类器
滚动轴承
故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于参数优化MPE与FCM的滚动轴承故障诊断
来源期刊 轴承 学科 工学
关键词 滚动轴承 故障诊断 参数优化 多尺度排列熵 遗传算法 微粒群算法 模糊C均值聚类
年,卷(期) 2017,(5) 所属期刊栏目 测量与仪器
研究方向 页码范围 33-38,44
页数 7页 分类号 TH133.3|TN911.7
字数 4483字 语种 中文
DOI 10.19533/j.issn1000-3762.2017.05.012
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陈东宁 燕山大学河北省重型机械流体动力传输与控制实验室 32 504 12.0 22.0
5 姚成玉 燕山大学河北省工业计算机控制工程重点实验室 72 999 16.0 29.0
6 来博文 燕山大学河北省工业计算机控制工程重点实验室 3 39 3.0 3.0
7 张运东 燕山大学河北省重型机械流体动力传输与控制实验室 1 7 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (56)
共引文献  (130)
参考文献  (10)
节点文献
引证文献  (7)
同被引文献  (7)
二级引证文献  (2)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(4)
  • 参考文献(1)
  • 二级参考文献(3)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(4)
  • 参考文献(0)
  • 二级参考文献(4)
2006(3)
  • 参考文献(1)
  • 二级参考文献(2)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(5)
  • 参考文献(1)
  • 二级参考文献(4)
2009(6)
  • 参考文献(0)
  • 二级参考文献(6)
2010(7)
  • 参考文献(0)
  • 二级参考文献(7)
2011(2)
  • 参考文献(1)
  • 二级参考文献(1)
2012(7)
  • 参考文献(0)
  • 二级参考文献(7)
2013(10)
  • 参考文献(1)
  • 二级参考文献(9)
2014(5)
  • 参考文献(3)
  • 二级参考文献(2)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2017(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(2)
  • 引证文献(2)
  • 二级引证文献(0)
2019(4)
  • 引证文献(4)
  • 二级引证文献(0)
2020(2)
  • 引证文献(0)
  • 二级引证文献(2)
研究主题发展历程
节点文献
滚动轴承
故障诊断
参数优化
多尺度排列熵
遗传算法
微粒群算法
模糊C均值聚类
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
轴承
月刊
1000-3762
41-1148/TH
大16开
河南省洛阳市吉林路
36-17
1958
chi
出版文献量(篇)
4658
总下载数(次)
6
论文1v1指导