基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了解决无线网络中流量的预测精度不高的问题,提出了一种自适应分组的栈式自编码( AG-SAEs)深度学习预测方法。在数据的预处理过程中,首先使用最大最小方式对数据进行归一化处理,并提出一种新型的自适应分组方法,把归一化后的链路数据进行关联性分组;然后,基于深度学习方法建立了一个多输入多输出的预测模型,并将分组后的数据输入到预测模型中,对该模型进行训练来建立输入和输出流量之间的映射关系;最后,为了进一步提高预测精度,在模型的训练过程中,使用改进型的牛顿法来进行权值参数更新。仿真实验以及和其他算法对比的结果证实了所提方案具有更小的预测相对误差。
推荐文章
基于随机森林算法和粗糙集理论的改进型深度学习 短期负荷预测模型
电力负荷预测
随机森林(RF)算法
深度学习(DL)
粗糙集理论(RST)
基于MLP改进型深度神经网络学习资源推荐算法
学习资源推荐
深度学习
卷积神经网络
word2vec
多层感知机
基于改进型BP神经网络的电网负荷预测
电网负荷预测
BP神经网络
模拟退火优化算法
预测误差
基于深度学习的脑卒中预测模型的改进
深度学习
脑卒中
神经网络
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进型深度学习的流量预测
来源期刊 电讯技术 学科 工学
关键词 认知网络 流量预测 深度学习 自适应分组
年,卷(期) 2017,(1) 所属期刊栏目
研究方向 页码范围 1-8
页数 8页 分类号 TN929.5
字数 6191字 语种 中文
DOI 10.3969/j.issn.1001-893x.2017.01.001
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 朱江 重庆邮电大学移动通信技术重庆市重点实验室 119 427 11.0 16.0
2 刘亚利 重庆邮电大学移动通信技术重庆市重点实验室 5 16 2.0 4.0
3 宋永辉 重庆邮电大学移动通信技术重庆市重点实验室 3 16 2.0 3.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (27)
共引文献  (209)
参考文献  (9)
节点文献
引证文献  (11)
同被引文献  (4)
二级引证文献  (0)
1958(1)
  • 参考文献(0)
  • 二级参考文献(1)
1962(1)
  • 参考文献(0)
  • 二级参考文献(1)
1982(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(2)
  • 参考文献(1)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(4)
  • 参考文献(2)
  • 二级参考文献(2)
2013(4)
  • 参考文献(2)
  • 二级参考文献(2)
2014(2)
  • 参考文献(1)
  • 二级参考文献(1)
2015(3)
  • 参考文献(3)
  • 二级参考文献(0)
2017(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(7)
  • 引证文献(7)
  • 二级引证文献(0)
2019(2)
  • 引证文献(2)
  • 二级引证文献(0)
2020(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
认知网络
流量预测
深度学习
自适应分组
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电讯技术
月刊
1001-893X
51-1267/TN
大16开
成都市营康西路85号
62-39
1958
chi
出版文献量(篇)
5911
总下载数(次)
21
总被引数(次)
28744
论文1v1指导