基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为提高烟草物流中心自动化分拣效率,基于视觉技术提出了一种与高速自动化条烟分拣线相匹配的快速条烟识别算法.将穹形光源和同轴光源相结合设计了一种新型打光方式,使用高速彩色相机获取条烟图像信息,提出一种基于AGAST(Adaptive and Generic Accelerated Segment Test)角点域的特征描述方法.根据提取的特征建立条烟图像数据库,并使用极端学习机(Extreme Learning Machine,ELM)进行训练与识别,实现条烟的快速识别.将本文算法与SIFT和SVM算法的识别效果进行对比,结果表明:本文算法的识别率和实时性均为最优,识别率达到100%,识别耗时在3种算法中最少,能够满足自动化分拣线10帧/秒的要求.该算法为有效提高条烟异常情况检测的精度提供了参考.
推荐文章
基于边缘点特征值的快速几何图形识别算法
特征边距
特征值
特征距
特征值跟随点
图形识别
基于空间纹理相似性的图像角点特征匹配算法
图像角点特征匹配
LBP特征向量
瑞利商
纹理特征空间
基于Harris角点和SURF特征的遥感图像匹配算法
Harris角点
SURF特征
特征描述符
尺度不变性
Harris-SURF算法
特征匹配
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于AGAST角点域特征的条烟快速识别算法
来源期刊 烟草科技 学科 工学
关键词 条烟识别 AGAST 特征描述 ELM SIFT SVM
年,卷(期) 2017,(5) 所属期刊栏目 设备与仪器
研究方向 页码范围 79-86
页数 8页 分类号 TP315
字数 5359字 语种 中文
DOI 10.16135/j.issn1002-0861.2016.0471
五维指标
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (61)
共引文献  (11)
参考文献  (12)
节点文献
引证文献  (3)
同被引文献  (16)
二级引证文献  (3)
1974(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(1)
  • 二级参考文献(0)
1999(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(4)
  • 参考文献(1)
  • 二级参考文献(3)
2004(2)
  • 参考文献(1)
  • 二级参考文献(1)
2005(7)
  • 参考文献(1)
  • 二级参考文献(6)
2006(4)
  • 参考文献(1)
  • 二级参考文献(3)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(8)
  • 参考文献(1)
  • 二级参考文献(7)
2009(6)
  • 参考文献(0)
  • 二级参考文献(6)
2010(6)
  • 参考文献(1)
  • 二级参考文献(5)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(7)
  • 参考文献(1)
  • 二级参考文献(6)
2014(6)
  • 参考文献(1)
  • 二级参考文献(5)
2015(4)
  • 参考文献(2)
  • 二级参考文献(2)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(4)
  • 引证文献(2)
  • 二级引证文献(2)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
条烟识别
AGAST
特征描述
ELM
SIFT
SVM
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
烟草科技
月刊
1002-0861
41-1137/TS
大16开
郑州市高新技术产业开发区枫杨街2号
36-33
1957
chi
出版文献量(篇)
4374
总下载数(次)
11
总被引数(次)
45391
论文1v1指导