基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
本文提出了一种用于多目标优化的进化算法——基于模糊C均值聚类的进化算法(A Fuzzy C-Means Clustering Based Evolutionary Algorithm,FCEA).在算法的迭代过程中,先利用模糊C均值聚类算法寻找种群的分布结构,通过对每一代种群进行模糊划分,获得每个个体隶属于每一类的隶属度,然后本文设计了一种基于隶属度的锦标赛选择算子,用于从整个种群中选择相似个体进行重组,引导算法进行搜索.实验结果表明,基于隶属度的锦标赛选择算子的应用能够提升算法的性能,与MOEA/D-DE、NSGAII、SPEA2、SMS-EMOA等先进的优化算法进行比较的结果表明,FCEA在求解具有复杂Pareto前沿的多目标优化问题(GLT系列)时具有一定的竞争力.
推荐文章
优化的核模糊C均值聚类算法
模糊C均值聚类
核函数
蝙蝠算法
佳点集
速度权重
基于C均值聚类及α-β-γ滤波的多目标跟踪
序列图像
目标跟踪
C均值聚类
α-β-γ滤波
基于免疫粒子群优化的模糊C均值聚类算法
粒子群优化算法
模糊聚类
模糊C均值算法
免疫系统
对当基
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于模糊C均值聚类的锦标赛选择机制与多目标优化研究
来源期刊 电子学报 学科 工学
关键词 进化算法 多目标优化 模糊C均值聚类 隶属度选择
年,卷(期) 2017,(11) 所属期刊栏目 学术论文
研究方向 页码范围 2677-2684
页数 8页 分类号 TP18
字数 4512字 语种 中文
DOI 10.3969/j.issn.0372-2112.2017.11.015
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张屹 三峡大学机械与动力学院 72 400 10.0 17.0
2 余振 三峡大学机械与动力学院 2 5 1.0 2.0
3 李子木 三峡大学机械与动力学院 2 5 1.0 2.0
4 陆瞳瞳 常州大学商学院 1 4 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (0)
共引文献  (0)
参考文献  (8)
节点文献
引证文献  (4)
同被引文献  (3)
二级引证文献  (2)
1984(1)
  • 参考文献(1)
  • 二级参考文献(0)
2002(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(2)
  • 参考文献(2)
  • 二级参考文献(0)
2008(1)
  • 参考文献(1)
  • 二级参考文献(0)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2012(1)
  • 参考文献(1)
  • 二级参考文献(0)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(2)
  • 引证文献(2)
  • 二级引证文献(0)
2019(4)
  • 引证文献(2)
  • 二级引证文献(2)
研究主题发展历程
节点文献
进化算法
多目标优化
模糊C均值聚类
隶属度选择
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电子学报
月刊
0372-2112
11-2087/TN
大16开
北京165信箱
2-891
1962
chi
出版文献量(篇)
11181
总下载数(次)
11
总被引数(次)
206555
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导