基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了克服推荐算法的静态性缺点,提出融合相似用户和信任关系的动态反馈协同过滤推荐算法.该算法用动态因子融合相似用户和信任关系,动态因子初始取随机数,根据用户反馈和系统预测的误差建立正负反馈机制.按照反馈类型,选择增值或衰减函数适当调整动态因子,以便系统更好预测用户评分.在真实数据集Epinions上的实验表明,采用正负反馈的动态融合算法,不仅克服了静态性缺点,而且较基于相似用户或者信任关系的推荐进一步提高了推荐准确率.
推荐文章
基于融合信任关系的协同过滤推荐算法
评分时间
用户喜好度
信任关系
协同过滤
结合时间权重与信任关系的协同过滤推荐算法
协同过滤
标签
时间行为
兴趣相似度
熟悉相似度
融合社交网络与关键用户的并行协同过滤推荐算法
社交网络
并行化
关键用户
协同过滤
大数据
电影推荐
融合协同过滤的线性回归推荐算法
线性回归
协同过滤
相似性
推荐算法
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 融合相似用户和信任关系的动态反馈协同过滤推荐算法
来源期刊 福州大学学报(自然科学版) 学科 工学
关键词 协同过滤推荐 相似用户 信任关系 动态融合
年,卷(期) 2017,(1) 所属期刊栏目
研究方向 页码范围 25-31
页数 7页 分类号 TP39
字数 5710字 语种 中文
DOI 10.7631/issn.1000-2243.2017.01.0025
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 肖如良 福建师范大学软件学院 29 154 7.0 11.0
2 邓新国 福州大学数学与计算机科学学院 4 21 3.0 4.0
3 高董英 福州大学数学与计算机科学学院 1 5 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (30)
共引文献  (139)
参考文献  (7)
节点文献
引证文献  (5)
同被引文献  (7)
二级引证文献  (15)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(6)
  • 参考文献(0)
  • 二级参考文献(6)
2010(6)
  • 参考文献(0)
  • 二级参考文献(6)
2011(7)
  • 参考文献(1)
  • 二级参考文献(6)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(2)
  • 参考文献(1)
  • 二级参考文献(1)
2014(4)
  • 参考文献(4)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(2)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(2)
  • 二级引证文献(0)
2017(2)
  • 引证文献(2)
  • 二级引证文献(0)
2018(4)
  • 引证文献(3)
  • 二级引证文献(1)
2019(10)
  • 引证文献(0)
  • 二级引证文献(10)
2020(4)
  • 引证文献(0)
  • 二级引证文献(4)
研究主题发展历程
节点文献
协同过滤推荐
相似用户
信任关系
动态融合
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
福州大学学报(自然科学版)
双月刊
1000-2243
35-1117/N
大16开
福建省福州市大学新区学园路2号
34-27
1961
chi
出版文献量(篇)
4219
总下载数(次)
6
总被引数(次)
24665
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导