作者:
基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
支持向量机(SVM)在处理大样本特征维数较多的数据集时,算法消耗时间长而且容易陷入局部最优解,选择不合适的SVM算法参数会影响SVM模型分类性能.为了提高SVM性能,提出了基于粒子群算法(PSO)和遗传算法(GA)相结合的SVM特征选择与参数同步优化算法PGS.在UCI标准数据集上的实验表明,PGS算法能有效地找出合适的特征子集及SVM算法参数,提高收敛速度并能在较小的特征子集获得较高的分类准确率.
推荐文章
基于PSO的LS-SVM特征选择与参数优化算法
最小二乘支持向量机
特征选择
参数优化
粒子群算法
基于改进烟花算法的SVM特征选择和参数优化
二进制编码
烟花算法
特征选择
参数优化
基于量子PSO的SVM参数选择及其应用
支持向量机
参数选择
改进的粒子群优化
脱附
软测量
粒子群优化
基于改进的PSO优化SVM火灾火焰识别算法研究
火焰检测
支持向量机
粒子群算法
参数优化
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于PSO与GA的SVM特征选择与参数优化算法
来源期刊 软件导刊 学科 工学
关键词 粒子群算法 遗传算法 支持向量机 特征选择 参数优化
年,卷(期) 2017,(5) 所属期刊栏目 算法与语言
研究方向 页码范围 21-23
页数 3页 分类号 TP312
字数 3448字 语种 中文
DOI 10.11907/rjdk.171267
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 温海标 广西师范学院计算机与信息工程学院 4 4 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (20)
共引文献  (15)
参考文献  (4)
节点文献
引证文献  (3)
同被引文献  (5)
二级引证文献  (11)
1995(1)
  • 参考文献(1)
  • 二级参考文献(0)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(3)
  • 参考文献(0)
  • 二级参考文献(3)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(3)
  • 参考文献(1)
  • 二级参考文献(2)
2012(3)
  • 参考文献(1)
  • 二级参考文献(2)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(3)
  • 引证文献(3)
  • 二级引证文献(0)
2019(7)
  • 引证文献(0)
  • 二级引证文献(7)
2020(4)
  • 引证文献(0)
  • 二级引证文献(4)
研究主题发展历程
节点文献
粒子群算法
遗传算法
支持向量机
特征选择
参数优化
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
软件导刊
月刊
1672-7800
42-1671/TP
16开
湖北省武汉市
38-431
2002
chi
出版文献量(篇)
9809
总下载数(次)
57
总被引数(次)
30383
论文1v1指导