基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对基于传统Gabor小波变换的人脸特征提取存在维数高的不足,提出了一种基于改进的Gabor特征融合和SVM的人脸识别算法,并用二维傅里叶变换进行加速求解,提高了特征提取的速率。提取了人脸图像的Gabor多方向和多尺度特征,然后对同一方向上不同尺度的特征进行融合,再采用fastPCA算法对融合后的特征进行降维,最后用改进的SVM分类器即混合核函数分类器进行分类识别,并利用两种处理模式对分类器进行融合。在FERET和ORL人脸库上进行了实验,结果表明该算法能有效地表征人脸,具有较高的识别率。
推荐文章
基于多特征融合CNN的人脸识别算法研究
人脸识别
卷积神经网络(CNN)
多特征融合
leakyrelu激活函数
人脸数据集
基于核稀疏表示的人脸人耳融合识别算法的研究
融合识别
核稀疏表示
特征提取
加权串联融合
正交匹配追踪算法
鲁棒性
基于多特征融合的人脸表情识别
表情识别
均值主元分析
线性判别
支持向量机
基于稀疏表示与特征融合的人脸识别方法
人脸识别
稀疏表示
低秩恢复
特征融合
鲁棒性
泛化性能
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于特征融合的人脸识别新算法
来源期刊 计算机技术与发展 学科 工学
关键词 人脸识别 Gabor特征融合 改进SVM 分类器融合
年,卷(期) 2017,(1) 所属期刊栏目 智能、算法、系统工程
研究方向 页码范围 65-69
页数 5页 分类号 TP301.6
字数 3984字 语种 中文
DOI 10.3969/j.issn.1673-629X.2017.01.015
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 吴锡生 江南大学物联网工程学院 81 560 14.0 18.0
2 魏月纳 江南大学物联网工程学院 2 14 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (64)
共引文献  (121)
参考文献  (14)
节点文献
引证文献  (7)
同被引文献  (9)
二级引证文献  (3)
1946(1)
  • 参考文献(0)
  • 二级参考文献(1)
1968(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(1)
  • 参考文献(0)
  • 二级参考文献(1)
1988(2)
  • 参考文献(0)
  • 二级参考文献(2)
1990(1)
  • 参考文献(0)
  • 二级参考文献(1)
1991(2)
  • 参考文献(0)
  • 二级参考文献(2)
1993(3)
  • 参考文献(0)
  • 二级参考文献(3)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1996(4)
  • 参考文献(0)
  • 二级参考文献(4)
1997(6)
  • 参考文献(1)
  • 二级参考文献(5)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
1999(3)
  • 参考文献(0)
  • 二级参考文献(3)
2000(6)
  • 参考文献(0)
  • 二级参考文献(6)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(4)
  • 参考文献(1)
  • 二级参考文献(3)
2004(6)
  • 参考文献(0)
  • 二级参考文献(6)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(5)
  • 参考文献(2)
  • 二级参考文献(3)
2007(5)
  • 参考文献(1)
  • 二级参考文献(4)
2008(4)
  • 参考文献(2)
  • 二级参考文献(2)
2009(2)
  • 参考文献(1)
  • 二级参考文献(1)
2010(5)
  • 参考文献(0)
  • 二级参考文献(5)
2011(2)
  • 参考文献(0)
  • 二级参考文献(2)
2012(4)
  • 参考文献(2)
  • 二级参考文献(2)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(3)
  • 参考文献(3)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(3)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(3)
  • 二级引证文献(0)
2017(3)
  • 引证文献(3)
  • 二级引证文献(0)
2018(4)
  • 引证文献(4)
  • 二级引证文献(0)
2019(2)
  • 引证文献(0)
  • 二级引证文献(2)
2020(1)
  • 引证文献(0)
  • 二级引证文献(1)
研究主题发展历程
节点文献
人脸识别
Gabor特征融合
改进SVM
分类器融合
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机技术与发展
月刊
1673-629X
61-1450/TP
大16开
西安市雁塔路南段99号
52-127
1991
chi
出版文献量(篇)
12927
总下载数(次)
40
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导