基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
区域电网的总体运行以及电网内电压的稳定性易受风电功率波动的影响,高精度的短期风电功率预测能够确保风电电力系统供电的稳定性和安全性.文章在KNN算法的基础上,提出了基于邻域密度的邻域KNN算法,应用于风电功率的短期预测.邻域KNN算法,首先找出测试对象在一定邻域范围内的训练样本集,统计训练样本集在空间每个维度的密度分布;然后计算出K值,不同的时刻,K值是动态变化的;最后根据KNN算法规则,将测试对象归类.以常州某风电场为例,利用邻域KNN算法对其历史数据进行分析并作出预测,验证了该算法的准确性与有效性.
推荐文章
基于CS-SVR模型的短期风电功率预测
功率预测
布谷鸟搜索算法
支持向量回归机
参数寻优
异常数据剔除
基于风速融合和NARX神经网络的短期风电功率预测
短期风电功率预测
预测模型
NARX神经网络
风速融合
数据融合
数据处理
基于ARMA的风电功率预测
风力发电
ARMA
风电功率预测
风电机组
基于动态集成LSSVR的超短期风电功率预测
超短期风电功率预测
最小二乘支持向量回归
动态集成
动态时间弯曲距离
数值天气预报
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于邻域KNN算法的风电功率短期预测模型
来源期刊 电测与仪表 学科 工学
关键词 邻域KNN算法 风力发电 短期功率预测
年,卷(期) 2017,(16) 所属期刊栏目 理论与实验研究
研究方向 页码范围 20-24
页数 5页 分类号 TM933
字数 3484字 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 林善明 河海大学物联网工程学院 27 208 7.0 14.0
2 朱念芳 河海大学物联网工程学院 1 5 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (86)
共引文献  (103)
参考文献  (9)
节点文献
引证文献  (5)
同被引文献  (26)
二级引证文献  (2)
1965(1)
  • 参考文献(0)
  • 二级参考文献(1)
1968(1)
  • 参考文献(0)
  • 二级参考文献(1)
1972(1)
  • 参考文献(0)
  • 二级参考文献(1)
1973(1)
  • 参考文献(0)
  • 二级参考文献(1)
1978(1)
  • 参考文献(0)
  • 二级参考文献(1)
1985(2)
  • 参考文献(0)
  • 二级参考文献(2)
1989(1)
  • 参考文献(1)
  • 二级参考文献(0)
1992(1)
  • 参考文献(0)
  • 二级参考文献(1)
1994(1)
  • 参考文献(0)
  • 二级参考文献(1)
1997(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(6)
  • 参考文献(0)
  • 二级参考文献(6)
2006(4)
  • 参考文献(0)
  • 二级参考文献(4)
2007(7)
  • 参考文献(0)
  • 二级参考文献(7)
2008(13)
  • 参考文献(1)
  • 二级参考文献(12)
2009(9)
  • 参考文献(0)
  • 二级参考文献(9)
2010(9)
  • 参考文献(0)
  • 二级参考文献(9)
2011(7)
  • 参考文献(1)
  • 二级参考文献(6)
2012(9)
  • 参考文献(1)
  • 二级参考文献(8)
2013(6)
  • 参考文献(1)
  • 二级参考文献(5)
2014(6)
  • 参考文献(3)
  • 二级参考文献(3)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(2)
  • 引证文献(2)
  • 二级引证文献(0)
2019(2)
  • 引证文献(0)
  • 二级引证文献(2)
2020(3)
  • 引证文献(3)
  • 二级引证文献(0)
研究主题发展历程
节点文献
邻域KNN算法
风力发电
短期功率预测
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
电测与仪表
半月刊
1001-1390
23-1202/TH
大16开
哈尔滨市松北区创新路2000号
14-43
1964
chi
出版文献量(篇)
7685
总下载数(次)
22
总被引数(次)
55393
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导