基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
一个图像集由大量变化不一的图像组成,而且这些图像都表示同一个人.现实中的图像集数据是非线性的,造成这些现象的因素有人脸的角度不同、光线的明暗等,因此图像集中的每幅图像都是变化的,如果近似的将一个图像集建模为线性子空间,而忽略了集合中数据结构的变化,很显然是不合理的,这也必然会影响到最后的识别率.受流形理论知识的启发,可以将图像集建模为一个流形,这与传统的将图像集建模为子空间的方法有着本质区别.本文在基于流形的人脸图像集识别方法的基础上进行改进,提出新的计算样子空间距离方法,最后采用所有最短子空间距离的平均值作为流形之间的距离,称为改进的多流形方法(Improved multi-manifold method,IMM).IMM方法在CMU PIE数据库上进行实验,结果表明该方法相比其他方法具有更高识别率.
推荐文章
基于局部邻域多流形度量的人脸识别
特征脸
流形
欧氏距离
局部权重矩阵
距离度量
图像集
仿射包
基于改进的格拉斯曼流形的模糊人脸图像识别
改进的格拉斯曼流形
模糊人脸识别
人脸特征分布
人脸识别方法
基于多尺度分析的人脸识别算法研究
人脸识别
多尺度分析
轮廓特征
角点特征
基于虚拟样本图像集的多流形鉴别学习算法
单样本人脸识别
虚拟样本
通用训练样本集
多流形鉴别学习
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进的多流形算法的人脸图像集识别
来源期刊 计算机系统应用 学科
关键词 图像集 流形 线性子空间 主角
年,卷(期) 2017,(1) 所属期刊栏目 软件技术·算法
研究方向 页码范围 129-134
页数 6页 分类号
字数 4082字 语种 中文
DOI 10.15888/j.cnki.csa.005520
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 于威威 上海海事大学信息工程学院 19 34 3.0 4.0
2 张燕 上海海事大学信息工程学院 6 10 2.0 3.0
3 李文媛 上海海事大学信息工程学院 2 2 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (27)
共引文献  (39)
参考文献  (11)
节点文献
引证文献  (0)
同被引文献  (0)
二级引证文献  (0)
1936(1)
  • 参考文献(1)
  • 二级参考文献(0)
1971(1)
  • 参考文献(0)
  • 二级参考文献(1)
1973(1)
  • 参考文献(1)
  • 二级参考文献(0)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2000(4)
  • 参考文献(1)
  • 二级参考文献(3)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(1)
  • 二级参考文献(2)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(3)
  • 参考文献(0)
  • 二级参考文献(3)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2007(4)
  • 参考文献(1)
  • 二级参考文献(3)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2010(5)
  • 参考文献(2)
  • 二级参考文献(3)
2011(5)
  • 参考文献(3)
  • 二级参考文献(2)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
研究主题发展历程
节点文献
图像集
流形
线性子空间
主角
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机系统应用
月刊
1003-3254
11-2854/TP
大16开
北京中关村南四街4号
82-558
1991
chi
出版文献量(篇)
10349
总下载数(次)
20
论文1v1指导