节点相似性分析是链路预测和社团挖掘中的重要部分.引入CN(Common Neighbor,共同邻居)算法、RA(Resource Allocation,资源分配)算法、AA(Adamic-Adar)算法、Sorenson算法等四种节点相似性算法作用于真实网络以及仿真网络(即小世界网络和无标度网络)网络,计算AUC(Area Under the Curve,曲线下面积)曲线从而比较算法的预测准确性,结果表明RA算法的预测准确性优于其他三种算法.随后将四种算法用于分析8例全身性癫痫患者脑电数据功能连接网络,结果发现RA算法预测准确性最佳,通过RA算法能确定最大节点相似度组成的节点簇,为量化大脑功能状态提供客观指标,未来可以将该方法用于临床辅助诊断.