作者:
原文服务方: 物联网技术       
摘要:
文中对传统的卷积神经网络Lenet-5的结构进行了改进,并利用拍摄的实景交通标志图对其进行训练.训练集含有10万张图片,训练大约消耗了一天时间,尽管如此,当网络训练好之后,识别一张交通标志图可以在1毫秒内完成.非训练集的2万张图片被用作测试集来验证已训练好的网络,最终识别率可达80%以上.
推荐文章
应用深层卷积神经网络的交通标志识别
交通标志
识别
卷积神经网络
深度学习
基于多尺度卷积神经网络的交通标志识别
模式识别系统
交通标志识别
多尺度卷积神经网络
SoftMax分类器
基于轻量型卷积神经网络的交通标志识别
卷积神经网络
交通标识
图像增强
深度可分离卷积
激活函数
基于优化的卷积神经网络在交通标志识别中的应用
卷积神经网络
非对称卷积
批量归一化
交通标志
梯度传输
分类精度
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于卷积神经网络的实景交通标志识别
来源期刊 物联网技术 学科
关键词 卷积神经网络 深度学习 交通标志识别 训练
年,卷(期) 2017,(1) 所属期刊栏目 全面感知
研究方向 页码范围 29-30
页数 2页 分类号 TP391.4
字数 语种 中文
DOI 10.16667/j.issn.2095-1302.2017.01.006
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 吕耀坤 1 7 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (22)
共引文献  (27)
参考文献  (5)
节点文献
引证文献  (7)
同被引文献  (36)
二级引证文献  (15)
1974(1)
  • 参考文献(0)
  • 二级参考文献(1)
1980(1)
  • 参考文献(0)
  • 二级参考文献(1)
1989(2)
  • 参考文献(1)
  • 二级参考文献(1)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(0)
  • 二级参考文献(1)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(1)
  • 参考文献(0)
  • 二级参考文献(1)
2012(3)
  • 参考文献(0)
  • 二级参考文献(3)
2013(1)
  • 参考文献(0)
  • 二级参考文献(1)
2014(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(4)
  • 参考文献(2)
  • 二级参考文献(2)
2016(3)
  • 参考文献(2)
  • 二级参考文献(1)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(11)
  • 引证文献(5)
  • 二级引证文献(6)
2020(10)
  • 引证文献(1)
  • 二级引证文献(9)
研究主题发展历程
节点文献
卷积神经网络
深度学习
交通标志识别
训练
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
物联网技术
月刊
2095-1302
61-1483/TP
16开
2011-01-01
chi
出版文献量(篇)
5103
总下载数(次)
0
论文1v1指导