基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
传统的蚁群算法应用于图像边缘检测时,会出现边缘不够平滑、受噪声影响大、易收敛于局部等问题.为了提高边缘检测的效果,将灰度梯度与区域灰度均值方法相结合,确定蚂蚁的初始位置和启发矩阵;引入权重因子定义新的概率转移函数,并通过混沌算法和自适应参数进行信息素矩阵的更新,避免过早陷入局部最优.实验结果表明,改进的蚁群算法可以有效减少噪声对边缘检测的影响,并获得更加完整和清晰的图像边缘,取得较好的效果.
推荐文章
改进蚁群优化算法的图像边缘检测
蚁群优化算法
外激素
像素域
图像边缘检测
数据结构控制
检测效率
基于蚁群优化算法的图像边缘检测
边缘检测
蚁群算法
蚁群优化算法
基于免疫蚁群融合算法的机械臂目标图像边缘检测
边缘检测
蚁群算法
免疫选择
信息素
基于蚁群算法的铝合金MIG焊熔池边缘检测
铝合金MIG焊
蚁群算法
熔池边缘提取
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于改进蚁群算法的图像边缘检测研究
来源期刊 计算机工程与应用 学科 工学
关键词 蚁群算法 边缘检测 权重 梯度 区域灰度均值 自适应
年,卷(期) 2017,(23) 所属期刊栏目 图形图像处理
研究方向 页码范围 171-176
页数 6页 分类号 TP391
字数 6131字 语种 中文
DOI 10.3778/j.issn.1002-8331.1704-0161
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 张贵仓 西北师范大学数学与统计学院 94 658 12.0 21.0
2 汪凯 西北师范大学数学与统计学院 8 29 2.0 5.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (72)
共引文献  (114)
参考文献  (11)
节点文献
引证文献  (25)
同被引文献  (152)
二级引证文献  (52)
1983(1)
  • 参考文献(0)
  • 二级参考文献(1)
1986(1)
  • 参考文献(0)
  • 二级参考文献(1)
1987(1)
  • 参考文献(0)
  • 二级参考文献(1)
1990(2)
  • 参考文献(0)
  • 二级参考文献(2)
1992(3)
  • 参考文献(1)
  • 二级参考文献(2)
1995(1)
  • 参考文献(0)
  • 二级参考文献(1)
1996(4)
  • 参考文献(1)
  • 二级参考文献(3)
1997(6)
  • 参考文献(1)
  • 二级参考文献(5)
2000(6)
  • 参考文献(0)
  • 二级参考文献(6)
2001(3)
  • 参考文献(0)
  • 二级参考文献(3)
2002(2)
  • 参考文献(0)
  • 二级参考文献(2)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(10)
  • 参考文献(0)
  • 二级参考文献(10)
2005(2)
  • 参考文献(0)
  • 二级参考文献(2)
2006(5)
  • 参考文献(0)
  • 二级参考文献(5)
2007(11)
  • 参考文献(1)
  • 二级参考文献(10)
2008(3)
  • 参考文献(0)
  • 二级参考文献(3)
2009(4)
  • 参考文献(2)
  • 二级参考文献(2)
2010(3)
  • 参考文献(1)
  • 二级参考文献(2)
2011(4)
  • 参考文献(0)
  • 二级参考文献(4)
2012(1)
  • 参考文献(0)
  • 二级参考文献(1)
2013(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(3)
  • 参考文献(1)
  • 二级参考文献(2)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(13)
  • 引证文献(10)
  • 二级引证文献(3)
2019(47)
  • 引证文献(14)
  • 二级引证文献(33)
2020(17)
  • 引证文献(1)
  • 二级引证文献(16)
研究主题发展历程
节点文献
蚁群算法
边缘检测
权重
梯度
区域灰度均值
自适应
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
计算机工程与应用
半月刊
1002-8331
11-2127/TP
大16开
北京619信箱26分箱
82-605
1964
chi
出版文献量(篇)
39068
总下载数(次)
102
总被引数(次)
390217
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导