基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
为了提高低速动车轴承故障诊断的有效性,提出基于互相关原理对EMD经验模态分解后的信号时域脉冲进行增强.轴承故障信息呈周期性出现,所以经过EMD分解得到的IMF分量也含有周期故障脉冲信号.为了增强故障脉冲信号的信噪比,利用基于对周期信号的时域相关性对各IMF本征模态分量分别进行时域叠加增强,最后对IMF进行包络分析提取故障特征频率.实验结果表明对IMF进行基于脉冲相关性的时域增强能够有效地抑制EMD无法去除的噪声信息,提高IMF包络谱中信噪比.
推荐文章
基于小波包分解和EMD-SVM的轴承故障诊断方法
故障诊断
小波包分解
轴承
支持向量机
基于EMD的滚动轴承故障诊断方法研究
故障诊断
滚动轴承
经验模态分解
峭度系数
Hilbert变换
基于EMD与GA-SVM的轴承故障诊断
轴承
故障诊断
特征提取
特征选择
经验模态分解
Shannon熵
Renyi熵
遗传算法
最小二乘支持向量机
Wrapper
经验模态分解(EMD)在滚动轴承故障诊断中的应用
滚动轴承
EMD
神经网络
故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于脉冲相关性的时域增强EMD轴承故障诊断
来源期刊 信息技术 学科 工学
关键词 经验模态分解 时域增强 叠加 互相关
年,卷(期) 2017,(11) 所属期刊栏目 基金项目
研究方向 页码范围 17-21
页数 5页 分类号 TP206.3
字数 4289字 语种 中文
DOI 10.13274/j.cnki.hdzj.2017.11.005
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 高晓蓉 西南交通大学光电工程研究所 220 1956 23.0 34.0
2 邱春蓉 西南交通大学光电工程研究所 13 46 3.0 6.0
3 梁含笑 西南交通大学光电工程研究所 2 3 1.0 1.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (21)
共引文献  (8)
参考文献  (9)
节点文献
引证文献  (1)
同被引文献  (8)
二级引证文献  (0)
1998(2)
  • 参考文献(1)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(2)
  • 参考文献(0)
  • 二级参考文献(2)
2004(3)
  • 参考文献(0)
  • 二级参考文献(3)
2005(3)
  • 参考文献(1)
  • 二级参考文献(2)
2006(2)
  • 参考文献(0)
  • 二级参考文献(2)
2008(1)
  • 参考文献(0)
  • 二级参考文献(1)
2009(1)
  • 参考文献(1)
  • 二级参考文献(0)
2010(1)
  • 参考文献(0)
  • 二级参考文献(1)
2011(3)
  • 参考文献(0)
  • 二级参考文献(3)
2012(4)
  • 参考文献(1)
  • 二级参考文献(3)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2015(2)
  • 参考文献(2)
  • 二级参考文献(0)
2016(3)
  • 参考文献(3)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
经验模态分解
时域增强
叠加
互相关
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
信息技术
月刊
1009-2552
23-1557/TN
大16开
哈尔滨市南岗区黄河路122号
14-36
1977
chi
出版文献量(篇)
11355
总下载数(次)
31
总被引数(次)
47901
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导