基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
欧氏聚类算法是多元统计中的一种重要分类方法,可以将其应用于测绘领域中点云数据的分割.本文首先计算点云数据中两点之间的欧氏距离,将距离小于指定阈值作为分为一类的判定准则;然后迭代计算,直至所有的类间距大于指定阈值,完成欧氏聚类分割.具体步骤为:①利用Octree法建立点云数据拓扑组织结构;②对每个点进行k近邻搜索,计算该点与k个邻近点之间的欧氏距离,最小归为一类;③设置一定的阈值,对步骤 ②迭代计算,直至所有类与类之间的距离大于指定阈值.试验证明,欧氏聚类算法对不同测量技术手段获取的点云数据均具有适用性,可以成功对点云数据进行分割,分割效果良好.
推荐文章
应用遗传模糊聚类实现点云数据区域分割
模糊聚类
遗传算法
区域分割
点云数据
逆向工程
基于优化粒子群算法的云环境大数据聚类算法
大数据聚类
云环境
粒子群优化
空间分割
模糊聚类
仿真测试
平滑度欧式聚类算法分割点云数据
分割
点云数据
欧式聚类
平滑度
云环境下基于群智能算法的大数据聚类挖掘技术
大数据聚类挖掘
云环境
群智能算法
数据挖掘
并行化聚类挖掘
数据密度计算
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 欧氏聚类算法支持下的点云数据分割
来源期刊 测绘通报 学科 地球科学
关键词 欧氏聚类 点云数据 分割 算法
年,卷(期) 2017,(11) 所属期刊栏目 学术研究
研究方向 页码范围 27-31,36
页数 6页 分类号 P23
字数 语种 中文
DOI
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 陈向阳 南通职业大学建筑工程学院 23 55 4.0 6.0
2 向云飞 5 15 2.0 3.0
3 杨洋 2 19 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (75)
共引文献  (268)
参考文献  (14)
节点文献
引证文献  (12)
同被引文献  (44)
二级引证文献  (6)
1981(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(1)
  • 参考文献(0)
  • 二级参考文献(1)
1998(2)
  • 参考文献(0)
  • 二级参考文献(2)
1999(4)
  • 参考文献(0)
  • 二级参考文献(4)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2001(1)
  • 参考文献(0)
  • 二级参考文献(1)
2002(1)
  • 参考文献(0)
  • 二级参考文献(1)
2003(3)
  • 参考文献(0)
  • 二级参考文献(3)
2004(2)
  • 参考文献(0)
  • 二级参考文献(2)
2005(7)
  • 参考文献(0)
  • 二级参考文献(7)
2006(10)
  • 参考文献(0)
  • 二级参考文献(10)
2007(9)
  • 参考文献(0)
  • 二级参考文献(9)
2008(9)
  • 参考文献(1)
  • 二级参考文献(8)
2009(7)
  • 参考文献(1)
  • 二级参考文献(6)
2010(5)
  • 参考文献(1)
  • 二级参考文献(4)
2011(9)
  • 参考文献(1)
  • 二级参考文献(8)
2012(4)
  • 参考文献(0)
  • 二级参考文献(4)
2013(7)
  • 参考文献(4)
  • 二级参考文献(3)
2014(5)
  • 参考文献(5)
  • 二级参考文献(0)
2016(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2018(1)
  • 引证文献(1)
  • 二级引证文献(0)
2019(9)
  • 引证文献(7)
  • 二级引证文献(2)
2020(8)
  • 引证文献(4)
  • 二级引证文献(4)
研究主题发展历程
节点文献
欧氏聚类
点云数据
分割
算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
测绘通报
月刊
0494-0911
11-2246/P
大16开
北京西城区三里河路50号
2-223
1955
chi
出版文献量(篇)
8030
总下载数(次)
39
总被引数(次)
77081
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
论文1v1指导