作者:
原文服务方: 现代电子技术       
摘要:
无线互联网的流量数据非常分离且极其不稳定,混沌理论在其身上体现得特别明显,因此对无线网络流量进行预测具有一定难度。该文使用BP神经网络建立预测模型,在常规神经网络系统进行训练之前,需要对系统内部各个层次之间的连接权值以及阈值范围实行初始化操作,但是此操作将会影响神经网络最终收敛速度,有可能造成最终结果为非最优解,使得流量预测结果不是很理想。因此这里使用布谷鸟搜索优化方式对神经网络系统内各层之间链接值与阈值进行初始化操作,提高系统预测精度。该文使用遗传优化神经网络算法和粒子群优化神经网络算法建立同样的预测模型,并与该文研究的预测模型进行对比。实例分析结果表明,初期预测结果精度较高,与实际值比较吻合,但测试数据越靠后,预测值越不稳定,这主要是累计误差造成的。但总的来说,该文使用的布谷鸟优化BP神经网络预测模型的预测性能要优于由遗传算法和粒子群算法优化的BP神经网络。
推荐文章
基于改进神经网络的无线网络流量预测
无线网络流量预测
粒子群优化算法
BP神经网络
ARIMA预测模型
基于组合优化理论的无线网络流量建模与预测
无线网络
自回归积分滑动平均模型
建模与预测
组合优化理论
无线网络流量压抑还原分析
流量压抑还原
小区用户数
小区数据流量
小区扩容
基于模糊逻辑的无线网络流量自适应控制
无线网络
显式窗口反馈
模糊控制
流量控制
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 神经网络在无线网络流量预测中的应用
来源期刊 现代电子技术 学科
关键词 无线网络 流量预测 BP神经网络 布谷鸟算法
年,卷(期) 2017,(2) 所属期刊栏目 电子与信息器件
研究方向 页码范围 111-113,117
页数 4页 分类号 TN915-34|TP393
字数 语种 中文
DOI 10.16652/j.issn.1004-373x.2017.02.026
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 雷晓明 6 7 1.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (17)
共引文献  (26)
参考文献  (15)
节点文献
引证文献  (1)
同被引文献  (0)
二级引证文献  (0)
2000(1)
  • 参考文献(0)
  • 二级参考文献(1)
2004(1)
  • 参考文献(0)
  • 二级参考文献(1)
2005(1)
  • 参考文献(0)
  • 二级参考文献(1)
2006(1)
  • 参考文献(1)
  • 二级参考文献(0)
2007(1)
  • 参考文献(0)
  • 二级参考文献(1)
2008(2)
  • 参考文献(0)
  • 二级参考文献(2)
2009(4)
  • 参考文献(3)
  • 二级参考文献(1)
2010(4)
  • 参考文献(2)
  • 二级参考文献(2)
2011(4)
  • 参考文献(1)
  • 二级参考文献(3)
2012(5)
  • 参考文献(2)
  • 二级参考文献(3)
2013(5)
  • 参考文献(3)
  • 二级参考文献(2)
2014(2)
  • 参考文献(2)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(0)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(0)
  • 二级引证文献(0)
2019(1)
  • 引证文献(1)
  • 二级引证文献(0)
研究主题发展历程
节点文献
无线网络
流量预测
BP神经网络
布谷鸟算法
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
现代电子技术
半月刊
1004-373X
61-1224/TN
大16开
1977-01-01
chi
出版文献量(篇)
23937
总下载数(次)
0
相关基金
国家自然科学基金
英文译名:the National Natural Science Foundation of China
官方网址:http://www.nsfc.gov.cn/
项目类型:青年科学基金项目(面上项目)
学科类型:数理科学
  • 期刊分类
  • 期刊(年)
  • 期刊(期)
  • 期刊推荐
论文1v1指导