基本信息来源于合作网站,原文需代理用户跳转至来源网站获取       
摘要:
针对齿轮箱振动信号的非平稳和非线性特征,给出了一种基于经验模态分解(EMD)近似熵和双子支持向量机(TWSVM)的齿轮箱故障诊断方法.对不同类型的齿轮信号进行EMD分解,得到若干个具有不同时间尺度的本征模函数(IMF)分量,再对IMF分量使用近似熵求解,得到一组特征向量,最后将其输入到TWSVM分类器中进行故障诊断.仿真实验表明,该方法能有效地提取故障特征,不同的故障类型表现出不同的故障信息;与传统SVM相比,TWSVM的计算时间更短,分类效果更好.
推荐文章
基于MCKD-EEMD近似熵和TWSVM的齿轮箱故障诊断
最大相关反褶积
总体平均经验模态分解
近似熵
双子支持向量机
齿轮箱故障诊断
基于LMD近似熵和PSO-ELM的齿轮箱故障诊断
齿轮箱
局域均值分解
近似熵
PSO-ELM
故障诊断
基于EMD分解和支持向量机的齿轮箱故障诊断与研究
齿轮箱
故障诊断
EMD
支持向量机
基于EMD-SVD与PNN的行星齿轮箱故障诊断研究
行星齿轮箱
经验模态分解
奇异值分解
概率神经网络
故障诊断
内容分析
关键词云
关键词热度
相关文献总数  
(/次)
(/年)
文献信息
篇名 基于EMD近似熵和TWSVM的齿轮箱故障诊断
来源期刊 煤矿机械 学科 工学
关键词 经验模态分解 近似熵 双子支持向量机 齿轮箱故障诊断
年,卷(期) 2017,(4) 所属期刊栏目 故障·诊断
研究方向 页码范围 142-145
页数 4页 分类号 TH132.46|TP277.3
字数 2352字 语种 中文
DOI 10.13436/j.mkjx.201704051
五维指标
作者信息
序号 姓名 单位 发文数 被引次数 H指数 G指数
1 刘飞 江南大学物联网工程学院 236 964 13.0 17.0
2 陈珺 江南大学物联网工程学院 21 70 4.0 7.0
3 张曹 江南大学物联网工程学院 2 13 2.0 2.0
传播情况
(/次)
(/年)
引文网络
引文网络
二级参考文献  (92)
共引文献  (149)
参考文献  (9)
节点文献
引证文献  (9)
同被引文献  (52)
二级引证文献  (17)
1991(1)
  • 参考文献(0)
  • 二级参考文献(1)
1993(2)
  • 参考文献(0)
  • 二级参考文献(2)
1995(2)
  • 参考文献(0)
  • 二级参考文献(2)
1997(3)
  • 参考文献(0)
  • 二级参考文献(3)
1998(3)
  • 参考文献(0)
  • 二级参考文献(3)
1999(6)
  • 参考文献(0)
  • 二级参考文献(6)
2000(7)
  • 参考文献(0)
  • 二级参考文献(7)
2001(2)
  • 参考文献(0)
  • 二级参考文献(2)
2002(5)
  • 参考文献(1)
  • 二级参考文献(4)
2003(4)
  • 参考文献(0)
  • 二级参考文献(4)
2004(10)
  • 参考文献(0)
  • 二级参考文献(10)
2005(5)
  • 参考文献(1)
  • 二级参考文献(4)
2006(6)
  • 参考文献(1)
  • 二级参考文献(5)
2007(5)
  • 参考文献(0)
  • 二级参考文献(5)
2008(7)
  • 参考文献(0)
  • 二级参考文献(7)
2009(3)
  • 参考文献(0)
  • 二级参考文献(3)
2010(9)
  • 参考文献(1)
  • 二级参考文献(8)
2011(9)
  • 参考文献(0)
  • 二级参考文献(9)
2012(6)
  • 参考文献(1)
  • 二级参考文献(5)
2013(2)
  • 参考文献(0)
  • 二级参考文献(2)
2014(3)
  • 参考文献(3)
  • 二级参考文献(0)
2015(1)
  • 参考文献(1)
  • 二级参考文献(0)
2017(1)
  • 参考文献(0)
  • 二级参考文献(0)
  • 引证文献(1)
  • 二级引证文献(0)
2017(1)
  • 引证文献(1)
  • 二级引证文献(0)
2018(2)
  • 引证文献(2)
  • 二级引证文献(0)
2019(16)
  • 引证文献(5)
  • 二级引证文献(11)
2020(7)
  • 引证文献(1)
  • 二级引证文献(6)
研究主题发展历程
节点文献
经验模态分解
近似熵
双子支持向量机
齿轮箱故障诊断
研究起点
研究来源
研究分支
研究去脉
引文网络交叉学科
相关学者/机构
期刊影响力
煤矿机械
月刊
1003-0794
23-1280/TD
大16开
哈尔滨市古香街30号
14-38
1980
chi
出版文献量(篇)
21080
总下载数(次)
49
论文1v1指导